Способ получения коагулянта (варианты)

 

Изобретение относится к технологии получения коагулянта, который используют на станциях подготовки питьевой воды. Техническая задача решается способом получения коагулянта, включающим обработку окиси или гидроокиси алюминия соляной кислотой, в котором обработку окиси или гидроокиси алюминия ведут при температуре 170-180oС и давлении 6-10 кгс/см2 в течение 5-6 ч, после охлаждения и фильтрования полученной смеси в нее вводят иодид алюминия или железа в количестве 0,1-0,5 мас.%. Техническая задача решается также способом получения коагулянта, включающим обработку окиси или гидроокиси алюминия соляной кислотой, в котором обработку окиси или гидроокиси алюминия ведут при температуре 170-180oС и давлении 6-10 кгс/см2 в течение 5-6 ч, перед охлаждением полученной смеси в нее вводят оксид или карбонат кальция в количестве 5-10 мас.%, а после охлаждения и фильтрования вводят иодид алюминия или железа в количестве 0,1-0,5 мас.%. Изобретение позволяет расширить арсенал средств получения эффективного коагулянта. 2 с.п. ф-лы, 2 табл.

Изобретение относится к технологии получения коагулянта, который используют на станциях подготовки питьевой воды.

Известен способ получения коагулянта путем взаимодействия окиси или гидроокиси алюминия с соляной кислотой и последующим введением в реакционную смесь металлического алюминия. Металлический алюминий вводят в раствор хлористого алюминия для образования оксихлорида алюминия заданного состава, см. патент RU 260624, М. кл. С 01 F 7/50, 1970.

Наиболее близким по технической сущности является способ получения коагулянта, включающий обработку окиси или гидроокиси алюминия соляной кислотой с последующим введением в полученную смесь металлического алюминия, в котором обработку окиси или гидроокиси алюминия соляной кислотой ведут в присутствии серной кислоты, см. патент RU 2094373, М. кл C 01 F 7/56, 1997.

Недостатком известных способов получения коагулянта является то, что способ требует расхода дорогостоящего металлического алюминия.

Задачей изобретения является расширение арсенала средств получения эффективного коагулянта.

Техническая задача решается способом получения коагулянта, включающим обработку окиси или гидроокиси алюминия соляной кислотой, в котором обработку окиси или гидроокиси алюминия ведут при температуре 170-180oС и давлении 6-10 кгс/см2 в течение 5-6 ч, после охлаждения и фильтрования полученной смеси в нее вводят иодид алюминия или железа (II) в количестве 0,1-0,5 мас. %.

Техническая задача решается также способом получения коагулянта, включающим обработку окиси или гидроокиси алюминия соляной кислотой, в котором обработку окиси и гидроокиси алюминия ведут при температуре 170-180oС и давлении 6-10 кгс/см2 в течение 5-6 ч, перед охлаждением полученной смеси в нее вводят оксид или карбонат кальция в количестве 5-10 мас.%, а после охлаждения и фильтрования вводят иодид алюминия или железа (II) в количестве 0,1-0,5 мас.%.

Решение технической задачи по первому и второму вариантам позволяет расширить арсенал средств получения эффективного коагулянта.

Вещества, используемые для осуществления способа: - окись и гидроокись алюминия - минеральное сырье или отходы, представляющие собой вторичные продукты неорганического или органического синтеза; - кислота соляная по ГОСТ 857-95; - карбонат кальция марки МТД-2 по ТУ 5743-008-05346453-97; - оксид кальция по ГОСТ 8677-76; - иодид алюминия по ТУ 6-09-01-545-78; - иодид железа по ТУ 6-09-03-1546-78.

Данное изобретение иллюстрируется следующими примерами конкретного выполнения.

Пример 1 (по первому варианту) В стеклянный теплоизолирующий реактор при работающей мешалке загружают 113,4 кг окиси алюминия и 405 кг 35%-ной соляной кислоты. После загрузки указанных реагентов ведут нагрев реакционной массы при температуре 170-180oС и давлении 6 кгс/см2 в течение 6 ч. Затем давление снижают до атмосферного, полученную смесь охлаждают, осадок отфильтровывают. В полученную смесь вводят иодид алюминия в количестве 0,52 кг (0,1 мас.%).

Примеры 2-4 аналогичны примеру 1, режимные условия осуществления способа, количество ингредиентов, содержание Al2O3 в реактивной массе и мольное соотношение Cl/Al приведены в таблице 1.

Пример 5 (по второму варианту) В стеклянный теплоизолирующий реактор при работающей мешалке загружают 69,35 кг окиси алюминия и 405 кг 35%-ной соляной кислоты. После загрузки указанных реагентов ведут нагрев реакционной массы при температуре 170-180oС и давлении 6 кгс/см2 в течение 6 ч. Затем давление снижают до атмосферного. Перед охлаждением полученной смеси в нее вводят 24 кг оксида кальция (5 мас. %), а после охлаждения и фильтрования вводят иодид алюминия в количестве 0,5 кг (0,1 мас.%).

Примеры 6-8 аналогичны примеру 5, режимные условия осуществления способа, количество ингредиентов, содержание Al2O3 в реактивной массе и мольное соотношение Cl/Al приведены в таблице 1.

Как следует из таблицы и по данным спектрального анализа, по примерам 1 и 2 получают коагулянт формулы Al(OH)mClkJp,
где 1. m=1,1; k=1,85; р=0,05;
2. m=1,1; k=1,8; p=0,10,
по примерам 3 и 4 формулы
AlFen(OH)mClkJp,
где 3. n=0,01; m=1,1; k=1,9; р=0,02;
4. n=0,05; m=1,1; k=1,9; р=0,1,
по примерам 5 и 6 формулы
AlCan(OH)mClkJp,
где 5. n=0,25; m=2,15; k=1,3; р= 0,05;
6. n=0,4; m=2,4; k=1,5; р=0,08,
по примерам 7 и 8 формулы
AlFelCan(OH)mСlkJp,
где 7. l=0,02; n=0,2; m=2,1; k=1,3; р= 0,04;
8. l=0,1; n=0,4; m=2,4; k=1,4; p=0,2.

Контроль по примерам 1-8 осуществляют по содержанию алюминия в растворе и по мольному соотношению Cl:Al.

Полученные коагулянты по примерам 1-8 прошли промышленные испытания на станциях подготовки питьевой воды. Характеристики воды до обработки и после ее обработки приведены в таблице 2.

Промышленные испытания показали эффективность коагулянта, полученного заявляемым способом, характеристики воды после обработки улучшаются: мутность в 20-60 раз, цветность в 20-50 раз, рН - соответствует норме. Коагулянты, полученные по первому и второму вариантам, используют в зависимости от кислотности воды.

Как видно из примеров конкретного выполнения, заявляемый объект расширяет арсенал средств получения эффективного коагулянта, который используют на станциях подготовки питьевой воды.


Формула изобретения

1. Способ получения коагулянта, включающий обработку окиси или гидроокиси алюминия соляной кислотой, отличающийся тем, что обработку окиси или гидроокиси алюминия ведут при температуре 170-180oС и давлении 6-10 кгс/см2 в течение 5-6 ч, после охлаждения и фильтрования полученной смеси в нее вводят иодид алюминия или железа в количестве 0,1-0,5 мас. %.

2. Способ получения коагулянта, включающий обработку окиси или гидроокиси алюминия соляной кислотой, отличающийся тем, что обработку окиси или гидроокиси алюминия ведут при температуре 170-180oС и давлении 6-10 кгс/см2 в течение 5-6 ч, перед охлаждением полученной смеси в нее вводят оксид или карбонат кальция в количестве 5-10 мас. %, а после охлаждения и фильтрования вводят иодид алюминия или железа в количестве 0,1-0,5 мас. %.

РИСУНКИ

Рисунок 1, Рисунок 2



 

Похожие патенты:
Изобретение относится к способам получения основных хлорсульфатов алюминия, которые могут быть использованы в качестве коагулянтов

Изобретение относится к технологии неорганических веществ, в частности к получению коагулянта на основе гидроксохлоросульфата алюминия, применяемого в процессах водоподготовки, очистки сточных вод и растворов, а также в других отраслях промышленности

Изобретение относится к технологии неорганических веществ, в частности к получению коагулянта на основе гидроксохлоросульфата алюминия, применяемого в процессах водоподготовки, очистки сточных вод и растворов, а также в других отраслях промышленности

Изобретение относится к технологии неорганических веществ, в частности к получению коагулянта на основе гидроксохлоросульфата алюминия, применяемого в процессах водоподготовки, очистки сточных вод и растворов, а также в других отраслях промышленности

Изобретение относится к производству абразивных тугоплавких материалов, в частности к получению порошка -оксида алюминия (корунда)

Изобретение относится к способу выделения существенно чистых глинозема и кремнезема из сырья, содержащего алюмосиликаты, и, конкретно, из отходов производства, образующихся при сгорании каменного угля
Изобретение относится к химической промышленности и цветной металлургии, связано с получением сухого гидроксохлорида алюминия

Изобретение относится к химической промышленности и цветной металлургии, которые связаны с производством соединений алюминия, направляемых для получения коагулянтов - гидроксохлорида и гидроксосульфата алюминия, катализаторов в качестве носителей, осушителей и для других целей

Изобретение относится к химической технологии производства фтористых солей, используемых при производстве алюминия электролизом глинозема, в частности к производству фтористого алюминия, и может быть использовано при производстве криолита

Изобретение относится к технологии глиноземного производства и может быть применено в практике металлургии, химического производства, строительной промышленности, фармацевтической отрасли

Изобретение относится к цветной металлургии, в частности к технологии производства глинозема из бокситов

Изобретение относится к цветной металлургии, в частности к технологии производства глинозема из бокситов

Изобретение относится к технологии неорганических веществ, в частности к производству сульфата алюминия, который может быть использован в качестве коагулянта, адсорбента или катализатора

Изобретение относится к области химической технологии и металлургии, а именно к способам получения фторалюминатов

Изобретение относится к области производства глинозема методом спекания, в частности к производству глинозема из нефелинового сырья

Изобретение относится к способам получения литийсодержащих фтористых солей, которые могут быть использованы в качестве комплексных добавок при производстве алюминия электролизом расплавленных солей

Изобретение относится к химической технологии неорганических веществ, в частности к способам получения гидроксохлорида алюминия, применяемого в системах водоподготовки, очистки сточных вод, медицинских препаратах и парфюмерно-косметических изделиях

Изобретение относится к технологии получения коагулянтов, которые используются при очистке хозяйственно-питьевых, промышленных и сточных вод

Изобретение относится к технологии получения коагулянтов, которые используются при очистке хозяйственно-питьевых, промышленных и сточных вод
Наверх