Способ получения жидких углеводородных продуктов из диоксида углерода

 

Диоксид углерода, содержащий примеси оксида углерода, оксидов серы и азота, подвергают взаимодействию с водой в присутствии катализатора. Процесс проводят в жидкой фазе в присутствии щелочного реагента при рН=7,5-14,0. Диоксид углерода пропускают через жидкую фазу со скоростью, не превышающей скорость испарения воды, в качестве катализатора используют соли металла, выбранные из группы: хлориды, нитраты, сульфиды или оксиды металлов, взятые в отдельности или в сочетании. Предпочтительно способ проводят при температуре 20-300oС и давлении 1-100 атм, в качестве металлов используют металлы, выбранные из группы: медь, кобальт, никель, железо, марганец, церий, молибден, вольфрам, цинк, в качестве щелочного реагента используют гидроксиды натрия, калия, карбонаты и бикарбонаты натрия, калия, кальция, магния. Технический результат - упрощение технологии получения жидких углеводородных продуктов. 3 з.п. ф-лы.

Изобретение относится к способам получения жидких углеводородных продуктов из газов, в частности из диоксида углерода, и может найти применение в нефтеперерабатывающей и нефтехимической отраслях промышленности.

Известен способ получения жидких углеводородных продуктов из диоксида углерода путем его контактирования с водородом в присутствии катализатора, например кристаллической структуры (ЕР 355229, 1990).

Недостаток указанного способа заключается в необходимости использования водорода, в необходимости синтеза катализатора, имеющего определенные характеристики.

Наиболее близким к изобретению является способ получения жидких углеводородных продуктов из диоксида углерода путем подачи на нагретую поверхность оксида металла газообразных диоксида углерода и паров воды при фотометрическом осуществлении реакции видимым светом (ЕР 0459471, 1991).

Недостатком данного способа является необходимость использования для синтеза жидких продуктов паров воды и специального источника облучения.

Задачей изобретения является упрощение технологии процесса.

Поставленная задача достигается описываемым способом получения жидких углеводородных продуктов из диоксида углерода путем его взаимодействия с водой в присутствии катализатора, при котором процесс ведут в жидкой фазе в присутствии щелочного реагента при рН=7,5-14,0. Диоксид углерода, содержащий примеси оксида углерода, оксидов серы и азота, пропускают через жидкую фазу со скоростью, не превышающей скорость испарения воды, в качестве катализатора используют соли металла, выбранные из группы, содержащей хлориды, нитраты, сульфиды, оксиды металлов, взятые в отдельности или в сочетании.

Предпочтительно процесс проводят при температуре 20-300oС и давлении 1-100 атм.

Предпочтительно в качестве металлов используют металлы, выбранные из группы, содержащей медь, кобальт, никель, железо, марганец, церий, молибден, вольфрам, цинк, в качестве щелочного реагента используют гидроксиды натрия, калия, карбонаты и бикарбонаты натрия, калия, кальция, магния.

Способ проводят следующим образом.

В воду вводят щелочной реагент, катализатор и в интервале температур 20-300oС при давлении 1-100 атм пропускают диоксид углерода, содержащий вышеуказанные примеси, со скоростью не выше скорости уноса паров воды. Количество таких примесей, активирующих процесс, в зависимости от способа получения диоксида углерода составляет различное значение и колеблется в интервале от 100 ррm до 10об.% Ниже приводятся примеры, иллюстрирующие изобретение.

Пример 1.

В 100 мл дистиллированной воды вводят 0,1 гмоль КОН и затем вводят 0,01 гмоль хлорида меди (СuСl2). Значение рН раствора составляет 12,5. Раствор термостатируют при 70oС и пропускают через него диоксид углерода, содержащий оксид углерода в количестве 0,2 об.%, оксиды серы и азота в количестве 1,2 об.% и 320 ppm соответственно, в течение двух суток со скоростью, не превышающей скорость уноса паров воды. Процесс проводят при давлении 1 атм.

По окончании опыта раствор нейтрализуют 10%-ным раствором соляной кислоты и углеводородный слой экстрагируют бензолом.

Выделяемое вещество в количестве 80 мг представляет собой маслянистую жидкость темного цвета, состоящую из смеси сложных органических веществ в виде эфиров, кислот, парафинов (по данным ГЖХ).

Пример 2.

В 100 мл дистиллированной воды вводят 0,1 гмоль карбоната натрия и затем вводят 0,01 гмоль хлорида никеля. Значение рН раствора составляет 8,7. Через раствор, нагретый до 60oС, в течение 30 ч пропускают диоксид углерода по примеру 1 со скоростью, не превышающей скорость уноса паров воды. Давление составляет 1 атм. После обработки продуктов реакции аналогично примеру 1 получают 70 мг маслянистой жидкости темного цвета.

Пример 3.

В 100 мл воды растворяют 0,1 гмоль Na2C03 (10,6 г) и вводят 0,01 гмоль нитрата кобальта. Процесс проводят при температуре 80oС, давлении 1,0 атм, рН раствора составляет 9,2. Через раствор в течение 30 ч пропускают диоксид углерода по примеру 1 со скоростью, не превышающей скорость уноса паров воды. После обработки продуктов реакции аналогично примеру 1 получают 50 мг маслянистой жидкости темного цвета.

Пример 4.

В 100 мл воды при 20oС добавляют смесь оксидов никеля и меди в массовом соотношении 1: 1, растворяют 0,1 гмоль бикарбоната натрия и в течение 15 суток пропускают диоксид углерода, содержащий оксид углерода в количестве 0,5 об. %, оксиды серы и азота в количестве 2,0 об.% и 150 ррm соответственно, со скоростью, не превышающей скорость уноса паров воды. После процессов нейтрализации и экстракции получают 75 мг маслянистой жидкости с включением твердых парафинсодержащих веществ.

Пример 5.

В 100 мл дистиллированной воды растворяют 0,1 гмоль карбоната калия, 0,01 гмоль нитрата церия, затем помещают в автоклав, нагревают до 200oС под давлением 50 атм и пропускают диоксид углерода по примеру 4 в течение 20 ч. Значение рН раствора 7,8. После процессов нейтрализации и экстракции получают 120 мг темно-коричневой маслянистой жидкости.

Использование других режимных условий, катализаторов и щелочных реагентов в рамках заявленных приводит к аналогичным результатам.

Способ согласно изобретению позволяет синтезировать из газообразной двуокиси углерода жидкие углеводородные продукты, содержащие разные группы углеводородов и кислородсодержащих соединений.

Формула изобретения

1. Способ получения жидких углеводородных продуктов из диоксида углерода путем его взаимодействия с водой в присутствии катализатора, отличающийся тем, что процесс ведут в жидкой фазе, в присутствии щелочного реагента, при рН= 7,5-14,0, диоксид углерода, содержащий примеси оксида углерода, оксидов серы и азота, пропускают со скоростью, не превышающей скорость испарения воды, в качестве катализатора используют соли металла, выбранные из группы, содержащей хлориды, нитраты, сульфиды, оксиды металлов, взятые в отдельности или в сочетании.

2. Способ по п. 1, отличающийся тем, что процесс проводят при температуре 20-300oС и давлении 1-100 атм.

3. Способ по п. 1, отличающийся тем, что в качестве металлов используют металлы, выбранные из группы, содержащей медь, кобальт, никель, железо, марганец, церий, молибден, вольфрам, цинк.

4. Способ по п. 1, отличающийся тем, что в качестве щелочного реагента используют гидроксиды натрия, калия, карбонаты и бикарбонаты натрия, калия, кальция, магния.



 

Похожие патенты:

Изобретение относится к способам окислительной очистки нефти и газоконденсата от сероводорода и меркаптанов и может быть использовано в газонефтедобывающей и нефтеперерабатывающей промышленности

Изобретение относится к способам окислительной очистки нефти и газоконденсата от сероводорода и меркаптанов и может быть использовано в газонефтедобывающей и нефтеперерабатывающей промышленности

Изобретение относится к способам окислительной очистки нефти и газоконденсата от сероводорода и меркаптанов и может быть использовано в газонефтедобывающей и нефтеперерабатывающей промышленности

Изобретение относится к нефтеперерабатывающей промышленности и может быть использовано для удаления ароматических углеводородов из гидроочищенной керосиновой фракции с целью получения высококачественного реактивного топлива с одновременным получением ароматического растворителя

Изобретение относится к нефтеперерабатывающей промышленности и может быть использовано для удаления ароматических углеводородов из гидроочищенной керосиновой фракции с целью получения высококачественного реактивного топлива с одновременным получением ароматического растворителя

Изобретение относится к нефтеперерабатывающей промышленности и может быть использовано в процессе выделения ароматических углеводородов С6-С8 из катализатов риформинга фракции 62-105oС жидкостной экстракцией селективными растворителями: триэтиленгликолем, сульфоланом, смесями триэтиленгликоля с сульфоланом и другими экстрагентами

Изобретение относится к нефтеперерабатывающей промышленности и может быть использовано в процессе выделения ароматических углеводородов С6-С8 из катализатов риформинга фракции 62-105oС жидкостной экстракцией селективными растворителями: триэтиленгликолем, сульфоланом, смесями триэтиленгликоля с сульфоланом и другими экстрагентами

Изобретение относится к способам деасфальтизации нефтяных остатков легкими углеводородными растворителями (пропаном, бутаном и их смесями), используемым для производства масел и сырья процесса каталитического крекинга и может найти применение в нефтеперерабатывающей промышленности

Изобретение относится к органической химии, а именно к нефтехимии и, в частности, к способу получения углеводородных бензиновых фракций каталитической конверсией синтез-газа

Изобретение относится к органической химии, а именно к нефтехимии и, в частности, к способу получения углеводородных бензиновых фракций каталитической конверсией смеси CO2 и H2 и/или смеси CO2, CO и H2

Изобретение относится к способам получения ароматических углеводородов из метана и, в частности, из природного газа

Изобретение относится к способу получения метана из атмосферного диоксида углерода. Способ характеризуется тем, что используют механическую смесь термически регенерируемого сорбента - поглотителя диоксида углерода, который представляет собой карбонат калия, закрепленный в порах диоксида титана, и имеет состав: мас%: K2CO3 - 1-40, TiO2 - остальное до 100, и фотокатализатора для процесса метанирования или восстановления выделяемого в процессе регенерации диоксида углерода состава: мас.%: Pt≈0,1-5 мас.%, CdS≈5-20 мас.%, TiO2 - остальное до 100, содержание фотокатализатора в смеси составляет 10-50 мас.%. Данный способ представляет собой энергоэффективный способ получения метана из диоксида углерода воздуха, использует альтернативную возобновляемую энергию для синтеза топлив. 4 з.п. ф-лы, 4 пр., 1 ил.

Изобретение относится к способу получения углеводородных продуктов, включающему стадии: (a) обеспечение синтез-газа, содержащего водород, монооксид углерода и диоксид углерода; (b) реакция превращения синтез-газа в оксигенатную смесь, содержащую метанол и диметиловый эфир, в присутствии одного или более катализаторов, которые совместно катализируют реакцию превращения водорода и монооксида углерода в оксигенаты, при давлении, по меньшей мере, 4 МПа; (c) извлечение со стадии (b) оксигенатной смеси, содержащей количества метанола, диметилового эфира, диоксида углерода и воды вместе с непрореагировавшим синтез-газом, и введение всего количества оксигенатной смеси без дополнительной обработки в стадию каталитического превращения оксигенатов (d); (d) реакция оксигенатной смеси в присутствии катализатора, который является активным в превращении оксигенатов в высшие углеводороды; (e) извлечение выходящего потока со стадии (d) и разделение выходящего потока на хвостовой газ, содержащий диоксид углерода, возникающий из синтез-газа, и доксид углерода, образованный на стадии (b), жидкую углеводородную фазу, содержащую полученные на стадии (d) высшие углеводороды, и жидкую водную фазу, где давление, применяемое на стадиях (c)-(e), является по существу таким же, как применяемое на стадии (b), причем часть хвостового газа, полученного на стадии (e), рециркулируют на стадию (d), а остальную часть хвостового газа отводят. Настоящий способ является способом в котором отсутствует рециркуляция непрореагировавшего синтез-газа на стадию синтеза оксигенатов и без охлаждения реакции превращения диметилового эфира в высшие углеводороды. 1 н.п., 5 з.п. ф-лы, 2 пр., 1 табл., 2 ил.

Настоящее изобретение предлагает способ производства этиленоксида, включающий: a. крекинг включающего этан исходного материала в зоне крекинга в условиях крекинга для получения олефинов, включая, по меньшей мере, этилен и водород; b. конверсию исходного оксигената в зоне конверсии оксигенатов в олефины (ОТО) для получения олефинов, включая, по меньшей мере, этилен; c. направление, по меньшей мере, части этилена, полученного на стадии (a) и/или (b), в зону окисления этилена вместе с исходным материалом, содержащим кислород, и окисление этилена для получения, по меньшей мере, этиленоксида и диоксида углерода; и в котором, по меньшей мере, часть исходного оксигената получают, направляя диоксид углерода, полученный на стадии (c), и исходный материал, содержащий водород, в зону синтеза оксигенатов и синтезируя оксигенаты, где исходный материал, содержащий водород, включает водород, полученный на стадии (a). В другом аспекте настоящее изобретение предлагает интегрированную систему для производства этиленоксида. Технический результат - разработка процесса получения этиленоксида и необязательно моноэтиленоксида путем интегрирования процессов крекинга этана и ОТО, позволяющего сократить выбросы диоксида углерода и количество синтез-газа, требуемого для синтеза оксигенатов. 2 н. и 13 з.п. ф-лы, 1 ил., 6 табл., 1 пр.

Изобретение относится к способу преобразования диоксида углерода в отходящем газе в природный газ с использованием избыточной энергии. Причем способ включает стадии, в которых: 1) выполняют трансформацию напряжения и выпрямление избыточной энергии, которая выработана из возобновляемого источника энергии, и которую затруднительно хранить или подключить к энергетическим сетям, направляют избыточную энергию в раствор электролита для электролиза воды в нем на Н2 и O2, и удаляют воду из Н2; 2) проводят очистку промышленного отходящего газа для отделения из него CO2, и очищают выделенный из него CO2; 3) подают Н2, генерированный на стадии 1), и CO2, отделенный на стадии 2), в оборудование для синтеза, включающее по меньшей мере два реактора со стационарным слоем, чтобы высокотемпературную газовую смесь с основными компонентами СН4 и водяным паром получить в результате высокоэкзотермической реакции метанирования между Н2 и CO2, причем первичный реактор со стационарным слоем сохраняют при температуре на входе 250-300°С, давлении реакции 3-4 МПа, и температуре на выходе 600-700°С; вторичный реактор со стационарным слоем сохраняют при температуре на входе 250-300°С, давлении реакции 3-4 МПа, и температуре на выходе 350-500°С; причем часть высокотемпературной газовой смеси из первичного реактора со стационарным слоем перепускают для охлаждения, удаления воды, сжатия и нагревания, и затем смешивают со свежими Н2 и CO2, чтобы транспортировать газовую смесь обратно в первичный реактор со стационарным слоем после того, как объемное содержания CO2 в ней составляет 6-8%; 4) используют высокотемпературную газовую смесь, генерированную на стадии 3), для проведения косвенного теплообмена с технологической водой для получения перегретого водяного пара; 5) подают перегретый водяной пар, полученный на стадии 4), в турбину для выработки электрической энергии, и возвращают электрическую энергию на стадию 1) для трансформации напряжения и выпрямления тока, и для электролиза воды; и 6) конденсируют и высушивают газовую смесь на стадии 4), охлажденную в результате теплообмена, до тех пор пока не будет получен природный газ с содержанием СН4 вплоть до стандартного. Также изобретение относится к устройству. Использование настоящего изобретения позволяет увеличить выход метанового газа. 2 н. и 9 з.п. ф-лы, 2 пр., 2 ил.

Изобретение относится к способу получения метанола из богатого диоксидом углерода потока в качестве первого сырьевого потока и богатого углеводородами потока в качестве второго сырьевого потока, а также к установке для его осуществления. Способ включает следующие стадии: подачу первого богатого диоксидом углерода сырьевого потока по меньшей мере к одной стадии метанизации и превращение первого сырьевого потока с водородом в условиях метанизации в богатый метаном поток, подачу богатого метаном потока по меньшей мере к одной стадии получения синтез-газа и превращение его вместе со вторым богатым углеводородами сырьевым потоком в поток синтез-газа, содержащий оксиды углерода и водород, в условиях получения синтез-газа, подачу потока синтез-газа к стадии синтеза метанола, встроенной в цикл синтеза, и превращение его в поток содержащего метанол продукта в условиях синтеза метанола, отделение метанола от потока содержащего метанол продукта и, факультативно, очистку метанола до потока конечного продукта метанола и выделение продувочного потока, содержащего оксиды углерода и водород, из установки синтеза метанола. Предлагаемое изобретение позволяет утилизировать парниковый газ диоксид углерода с получением метанола при использовании простой технологии. 2 н. и 13 з.п. ф-лы, 4 ил.

Изобретение относится к области химической технологии и может быть использовано в процессах жидкостной экстракции, например, в нефтепереработке на установках селективной очистки масляных фракций такими растворителями, как фенол, фурфурол, М-метил-2-пирролидон и другие

Изобретение относится к области химической технологии и может быть использовано в процессах жидкостной экстракции, например, в нефтепереработке на установках селективной очистки масляных фракций такими растворителями, как фенол, фурфурол, N-метил-2-пирролидон и другие
Наверх