Способ селективного определения толуидинов в газовых смесях



 

Изобретение относится к аналитической химии органических соединений и может быть применено для определения концентрации паров толуидинов в газовой смеси. В способе селективного определения толуидинов в газовых смесях, включающем модифицирование электродов резонатора сорбентом, пьезокварцевое детектирование и регенерацию сенсора, новым является то, что для модификации электродов сенсора применяют полиэтиленгликоль-2000 (ПЭГ-2000) или триокстиламиноксид (ТОАО) с массой 5-7 мкг, наносимые из толуольного или ацетонового растворов с концентрацией 1 мкг/мкл на тензочувствительную область электродов в зависимости от определяемого изомера толуидина с последующей сушкой в течение 2 ч при 150oС. По сравнению с прототипом предлагаемый способ селективного определения толуидинов в газовых смесях позволяет сократить продолжительность полного анализа в 1,5-2 раза, при повторном определении на сформированном сорбенте - в 3-4 раза; повысить воспроизводимость сорбции на одной и той же пленке модификатора в 10 раз; снизить предел обнаружения в 2 раза, повысить чувствительность резонатора к толуидинам в 2 раза. 2 табл.

Изобретение относится к аналитической химии органических соединений и может быть применено для определения концентрации паров толуидинов в газовой смеси.

Известен способ определения толуидинов по образованию азокрасителей при сочетании диазотированных толуидинов с R-солью [Технические условия на методы определения вредных веществ в воздухе. - М., Рекламинформбюро ММФ. - Вып. X. - 1977. - 117 с.].

Для определения газов в воздухе известно применение метода пьезокварцевого микровзвешивания с предварительной модификацией электродов [Sensors materials, technology, state of the art and future trends /Audeh S.A., Munfer P.J., Regtien P.P., Wolffenburrel R.F. // Adv. Mater. Technol. Monitor. - 1989. - 14. - P. 1-70].

Недостатками известных способов являются низкая селективность, применение большого количества реактивов, необходимость концентрирования пробы.

Наиболее близким по технической сущности и достигаемому результату является способ определения анилина в воздухе методом пьезокварцевого микровзвешивания с предварительной модификацией электродов резонатора [Rajakovic Lj. , Cavic В. Moducnost primene akustichih senzora za detekciju eksploziva i njihovih komponenti // Naucno-Tehnicki Pregled. - 1992. - V. 17, 2. - Р. 3-7].

Недостатком способа является многовариантность зависимости отклика резонатора от внешних факторов.

Технической задачей изобретения является селективное определение толуидинов в газовых смесях, снижение пределов обнаружения и повышение точности определения, ускорение анализа.

Решение задачи достигается тем, что в способе селективного определения толуидинов в газовых смесях, включающем модифицирование электродов резонатора сорбентом, пьезокварцевое детектирование и регенерацию сорбента, новым является то, что для модификации электродов сенсора применяют полиэтиленгликоль марки ПЭГ-2000 или триоктиламиноксид с массой 5-7 мкг, наносимые из толуольного или ацетонового растворов с концентрацией 1 мкг/мкл на тензочувствительную область электродов в зависимости от определяемого изомера толуидина с последующей сушкой в течение 2 ч при 150oС.

Технический результат заключается в том, что на электроды резонатора наносят модификатор из толуольного или ацетонового раствора триоктиламиноксида в зависимости от определяемого изомера толуидина.

Способ заключается в том, что пробу воздуха, содержащую пары толуидинов, помещают в ячейку детектирования с закрепленным резонатором, электроды которого предварительно модифицируют. В результате селективной сорбции на модификаторе происходит изменение собственной частоты вибраций резонатора F, которая является аналитическим сигналом и связана с концентрацией аналитов в пробе воздуха, которую находят по градуировочному графику.

Примеры осуществления способа Пример 1. На обе стороны пьезокварцевого резонатора АТ-среза с Ag-электродами микрошприцем наносят 1,0 мкл толуольного раствора полиэтиленгликоля марки ПЭГ-2000 с концентрацией 1 мкг/мкл. Пленку сушат в сушильном шкафу в течение 2 ч при 150oС. В результате такой обработки резонатора масса пленки модификатора составляет 5-7 мкг. Резонатор охлаждают до комнатной температуры в эксикаторе над слоем осушителя.

После закрепления резонатора в газоотборной ячейке вместимостью 1 дм3 измеряют нулевой сигнал резонатора с пленкой модификатора. В ячейку вводят анализируемую пробу и регистрируют частоту вибрации резонатора. Модификаторы электродов регенерируют в сушильном шкафу в течение 10 мин при 1505oС.

Продолжительность анализа, включая модификацию электродов и регенерацию сорбента, составляет 2,5 ч; при повторном цикле (только сорбция толуидинов и регенерация поверхности модификатора) - 15 мин. Амортизационная стойкость пленки - 10 анализов в непрерывном режиме.

Метрологические характеристики способа приведены в табл.1.

Аналитический сигнал с предложенным модификатором по отношению к о-толуидину составляет 9000 Гц.

Пример 2. На обе стороны пьезокварцевого резонатора АТ-среза с собственной частотой вибрации 8 МГц микрошприцем наносят 1,0 мкл толуольного раствора ПЭГ-2000 с концентрацией 1 мкг/мкл. Последующие операции проводят, как указано в примере 1.

Метрологические характеристики способа приведены в табл.1.

Аналитический сигнал с предложенным модификатором по отношению к м-толуидину составляет 15000 Гц.

Пример 3. На обе стороны пьезокварцевого резонатора АТ-среза с собственной частотой вибрации 8 МГц микрошприцем наносят 1,0 мкл толуольного раствора ПЭГ-2000 с концентрацией 1 мкг/мкл. Последующие операции проводят, как указано в примере 1.

Метрологические характеристики способа приведены в табл.1.

Аналитический сигнал с предложенным модификатором по отношению к п-толуидину составляет 870 Гц.

Пример 4. На обе стороны пьезокварцевого резонатора АТ-среза с собственной частотой вибрации 8 МГц микрошприцем наносят 1,0 мкл ацетонового раствора ПЭГ-2000 с концентрацией 1 мкг/мкл. Последующие операции проводят, как указано в примере 1.

Метрологические характеристики способа приведены в табл. 1.

Аналитический сигнал с предложенным модификатором по отношению к о-толуидину составляет 2500 Гц.

Пример 5. На обе стороны пьезокварцевого резонатора АТ-среза с собственной частотой вибрации 8 МГц микрошприцем наносят 1,0 мкл ацетонового раствора ПЭГ-2000 с концентрацией 1 мкг/мкл. Последующие операции проводят, как указано в примере 1.

Метрологические характеристики способа приведены в табл. 1.

Аналитический сигнал с предложенным модификатором по отношению к м-толуидину составляет 2000 Гц.

Пример 6. На обе стороны пьезокварцевого резонатора АТ-среза с собственной частотой вибрации 8 МГц микрошприцем наносят 1,0 мкл ацетонового раствора ПЭГ-2000 с концентрацией 1 мкг/мкл. Последующие операции проводят, как указано в примере 1.

Метрологические характеристики способа приведены в табл. 1.

Аналитический сигнал с предложенным модификатором по отношению к п-толуидину составляет 130 Гц.

Пример 7. На обе стороны пьезокварцевого резонатора АТ-среза с собственной частотой вибрации 8 МГц микрошприцем наносят толуольный раствор ТОАО. Далее анализируют, как указано в примере 1.

Метрологические характеристики способа приведены в табл. 1.

Аналитический сигнал с предложенным модификатором по отношению к о-толуидину достигает 2770 Гц.

Пример 8. На обе стороны пьезокварцевого резонатора АТ-среза с собственной частотой вибрации 8 МГц микрошприцем наносят толуольный раствор ТОАО. Далее анализируют, как указано в примере 1.

Метрологические характеристики способа приведены в табл. 1.

Аналитический сигнал с предложенным модификатором по отношению к м-толуидину достигает 2400 Гц.

Пример 9. На обе стороны пьезокварцевого резонатора АТ-среза с собственной частотой вибрации 8 МГц микрошприцем наносят толуольный раствор ТОАО. Далее анализируют, как указано в примере 1.

Метрологические характеристики способа приведены в табл. 1.

Аналитический сигнал с предложенным модификатором по отношению к п-толуидину достигает 900 Гц.

Пример 10. На обе стороны пьезокварцевого резонатора АТ-среза с собственной частотой вибрации 8 МГц микрошприцем наносят ацетоновый раствор ТОАО. Далее анализируют, как указано в примере 1.

Метрологические характеристики способа приведены в табл. 1.

Аналитический сигнал с предложенным модификатором по отношению к о-толуидину достигает 2000 Гц.

Пример 11. На обе стороны пьезокварцевого резонатора AТ-среза с собственной частотой вибрации 8 МГц микрошприцем наносят ацетоновый раствор ТОАО. Далее анализируют, как указано в примере 1.

Метрологические характеристики способа приведены в табл. 1.

Аналитический сигнал с предложенным модификатором по отношению к м-толуидину достигает 3700 Гц.

Пример 12. На обе стороны пьезокварцевого резонатора АТ-среза с собственной частотой вибрации 8 МГц микрошприцем наносят ацетоновый раствор ТОАО. Далее анализируют, как указано в примере 1.

Метрологические характеристики способа приведены в табл. 1.

Аналитический сигнал с предложенным модификатором по отношению к п-толуидину достигает 1650 Гц.

Пример 13. На обе стороны пьезокварцевого резонатора АТ-среза с собственной частотой вибрации 8 МГц микрошприцем наносят ацетоновый раствор ТОАО. Далее анализируют, как указано в примере 1.

Метрологические характеристики способа приведены в табл. 1.

Аналитический сигнал с предложенным модификатором по отношению к м-толуидину достигает 3000 Гц.

Пример 14. На обе стороны пьезокварцевого резонатора АТ-среза с собственной частотой вибрации 8 МГц микрошприцем наносят ацетоновый раствор ТОАО. Далее анализируют, как указано в примере 1.

Метрологические характеристики способа приведены в табл. 1.

Аналитический сигнал с предложенным модификатором по отношению к м-толуидину достигает 2700 Гц.

Из примеров 1-14 и табл. 1 видно, что решение поставленной задачи достигается тем, что в качестве модификатора электродов резонатора используются толуольные (примеры 1-3, 7-9) или ацетоновые (примеры 4-6, 10-14) растворы ПЭГ-2000 (примеры 1-6) или ТОАО (примеры 7-14) с массой 5-7 мкг (примеры 1-12). При уменьшении (пример 13) или увеличении (пример 14) массы пленки модификатора чувствительность определения (S, Гц дм3/моль) толуидинов снижается, ошибка определения возрастает.

Для определения о-толуидина (примеры 1, 4, 7, 10) в качестве модификатора электродов резонатора следует использовать ТОАО, наносимый из толуольного раствора (пример 7); для определения м-толуидина (примеры 2, 5, 8, 11) - ацетоновый раствор ТОАО (пример 11), т.к. при этом сохраняются высокая чувствительность и низкая ошибка определения (W, %).

По сравнению с прототипом (табл. 2) предлагаемый способ селективного определения толуидинов в газовых смесях позволяет сократить продолжительность полного анализа в 1,5-2 раза, при повторном определении на сформированном сорбенте - в 3-4 раза; повысить воспроизводимость результатов сорбции на одной и той же пленке модификатора в 10 раз; снизить предел обнаружения в 2 раза, повысить чувствительность резонатора к толуидинам в 2 раза.

Формула изобретения

Способ селективного определения толуидинов в газовых смесях, включающий модифицирование электродов резонатора сорбентом, пьезокварцевое детектирование и регенерацию сорбента, отличающийся тем, что для модификации электродов сенсора применяют полиэтиленгликоль марки ПЭГ-2000 или триоктиламиноксид с массой 5-7 мкг, наносимые из толуольного или ацетонового растворов с концентрацией 1 мкг/мкл на тензочувствительную область электродов в зависимости от определяемого изомера толуидина с последующей сушкой в течение 2 ч при 150oС.

РИСУНКИ

Рисунок 1, Рисунок 2



 

Похожие патенты:

Изобретение относится к аналитической химии органических соединений и может быть применено для определения диэтиламина в воздухе населенных мест

Изобретение относится к аналитической химии, конкретно, к 3,31-замещенным трифенилметановым красителям, которые могут быть использованы в титриметрическом анализе в качестве кислотно-основных индикаторов

Изобретение относится к аналитической химии органических соединений и может быть применено для определения концентрации паров толуидинов в воздухе рабочей зоны и населенных мест

Изобретение относится к аналитической химии, а именно к изготовлению индикаторных бумаг и количественному определению содержания нитратов и нитритов с их помощью в сточных и природных водах и жидких средах

Изобретение относится к области аналитической химии и может быть использовано в металлургии, химической индустрии, экологии, медицине, пищевой промышленности

Изобретение относится к области аналитической химии и, в частности, может быть использовано для определения микрокомпонетного состава конденсатов и нефтей с помощью атомно-абсорбционного спектрометра

Изобретение относится к области иммунологии и может быть использовано в охране окружающей среды

Изобретение относится к области анализа, конкретно к области анализа небиологических материалов физическими и химическими методами

Изобретение относится к области аналитического приборостроения и может найти применение при градуировке газоанализаторов

Изобретение относится к области аналитической химии и может быть использовано для определения микроколичеств тяжелых металлов: Cd, Сu, Со, Ni, Zn в природных и сточных водах

Изобретение относится к газовой хроматографии

Изобретение относится к аналитической химии органических соединений и может быть применено для определения диэтиламина в воздухе населенных мест

Изобретение относится к способам осуществления экологического мониторинга, а именно сорбционного контроля состояния и загрязнения водных объектов, и может быть использовано для целей экологического контроля природных и техногенных вод, включая речные водоемы, шахтные и карьерные воды, а также промышленные стоки различной природы

Изобретение относится к аналитическому приборостроению, в частности к детекторам для газовых хроматографов

Изобретение относится к области аналитической химии

Изобретение относится к аналитической химии органических соединений и может быть применено для определения концентрации паров толуидинов в воздухе рабочей зоны и населенных мест

Изобретение относится к физико-химическим методам исследования свойств материалов с помощью газовой хроматографии

Изобретение относится к ароматическим аминам, в частности к получению 4- трет-бутиланилина, являющегося полупродуктом в производстве красителей и фармпрепаратов, может быть использовано в лакокрасочной и медицинской отраслях промышленности
Наверх