Способ электроэрозионно-химической доводки зубчатых колес

 

Изобретение относится к области машиностроения и может быть применено при доводке зубчатых колес. Обработку осуществляют в два этапа. Сначала одновременно обрабатывают колеса от обоих генераторов до получения нулевого градиента тока с использованием в качестве анода колеса большего диаметра. Оставляют подключенным к положительному полюсу электрохимического генератора колесо меньшего диаметра и ведут обработку до удаления лунок, образовавшихся после электроэрозионной обработки. Переключают полярность и обрабатывают колесо большего диаметра инструментом в виде колеса меньшего диаметра до удаления лунок с контактных поверхностей зубьев. Количество электричества от электрохимического генератора увеличивают пропорционально соотношениям диаметров зубчатых колес. Способ позволяет повысить кинематическую точность колес и степень контакта зубьев до 95-100%. 1 ил.

Изобретение относится к области машиностроения и может быть использовано при доводке зубчатых колес.

Известен способ притирки зубчатых колес с применением абразивных материалов [1] . Этот способ заключается в том, что между вращающимися колесами подают абразив с маслом, который возобновляют по мере удаления неровностей. Однако этот способ не позволяет обеспечить точность профиля из-за неравномерного контролируемого съема металла.

Наиболее близким является способ доводки с применением электроэрозионной и электрохимической обработки [2] . Этот способ заключается в том, что на вращающиеся колеса подается одновременно ток от электроэрозионного и электрохимического источников питания. При этом в качестве анода обычно берется колесо большего диаметра. Недостатком этого способа является то, что при различных диаметрах происходит повышенный съем металла с одного из колес и нарушается точность всей пары.

Изобретение направлено на повышение точности поверхности зубчатых передач.

Это достигается тем, что обработку осуществляют в два этапа: сначала обрабатывают колеса от обоих генераторов до получения нулевого градиента тока с использованием в качестве анода колеса большего диаметра, после чего оставляют подключенным к положительному полюсу электрохимического генератора колесо меньшего диаметра и ведут обработку до удаления лунок от предшествующего этапа, затем переключают полярность и ведут обработку до выравнивания поверхности, при этом количество электричества от электрохимического генератора регулируют пропорционально соотношениям диаметров зубчатых колес.

На чертеже представлена схема доводки зубчатых колес.

Зубчатое колесо большего диаметра 1 находится в контакте с зубчатым колесом меньшего диаметра 2. Электроэрозионный генератор 3 через регулятор тока 4 соединен с зубчатыми колесами 1 и 2. Электрохимический генератор 5 через переключатель полярности 6 и прибор для измерения количества электричества 7 соединен с зубчатыми колесами 1 и 2, которые в зависимости от полярности последовательно являются инструментами.

Способ осуществляется следующим образом. Ток от генератора 3 подают на зубчатое колесо большего диаметра 1 и на зубчатое колесо меньшего диаметра 2 через регулятор тока 4. Положительный полюс подключен к колесу большего диаметра, при этом колесо меньшего диаметра является инструментом. Ток от генератора 5 поступает через переключатель полярности 6 на зубчатые колеса 1 и 2 и контролируется прибором для измерения количества электричества 7. Положительный полюс обоих генераторов 3 и 5 подключают на зубчатое колесо большего диаметра 1. Включают вращение зубчатых колес 1 и 2 в паре и оба генератора 3 и 5. Обработку ведут до стабилизации показаний амперметра на электрохимическом генераторе 5, то есть до получения нулевого градиента тока. Это показывает, что площадь контакта всех зубьев одинакова и степень контакта наибольшая, то есть достигнута доводка зубьев по профилю. Затем отключают электроэрозионный генератор 3, оставляя только электрохимический генератор 5. Переключают полярность переключателем 6 электрохимического генератора 5 так, чтобы колесо меньшего диаметра 2 стало анодом. При этом колесо большего диаметра становится инструментом. Обрабатывают колесо меньшего диаметра 2 до удаления лунок от предшествующего этапа обработки. Затем переключают полярность и ведут обработку в течение времени, при котором количество электричества от электрохимического генератора 5 регулируют пропорционально соотношениям диаметров зубчатых колес.

Пример реализации способа.

Выбраны два колеса с модулем 3, диаметром примерно 80 и 20 мм, которые установлены на экспериментальную установку с вращением 9-12 об/мин с электроэрозионным генератором RC-схемы, электрохимическим генератором ВАКР 630. В качестве регуляторов тока выбраны реостаты. Сила тока измерялась амперметрами, время - с помощью реле времени. Был выбран режим электроэрозионной обработки: напряжение U = 3545 В, емкость конденсаторов С = 0,50,7 мкФ. Ток на электрохимическом источнике составлял 0,80,9 А при напряжении 35 В. В качестве анода было выбрано колесо диаметром 80 мм. Примерно через 0,5 мин ток достиг величины 0,2-0,22 А и стабилизировался. Глубина лунок при этом составила 0,1-0,12 мкм. Генератор электроэрозионный отключили, а переключатель полярности на электрохимическом генераторе поставили в положение, при котором меньшее колесо стало анодом. Визуально наблюдали выравнивание поверхности малого колеса и фиксировали показания на приборе для измерения количества электричества, использованного на процесс. Полученное количество электричества умножали на соотношение D/d, переключили полярность и вели обработку до получения на приборе для измерения количества электричества приращения, равного расчетному количеству электричества, после чего электрохимический генератор отключили. Общий съем на сторону составил 0,15-0,17 мм, что находится в поле допуска на толщину зуба. Если допуск меньше, то при нарезке зубьев предусматривают припуск, равный съему материала при доводке.

Предлагаемый способ по сравнению с известными отличается повышением кинематической точности колес на 1-2 квалитета, повышением степени контакта зубьев до 95-100%.

Источники информации 1. В.В.Данилевский. Технология машиностроения. - М.: Высшая школа, 1977, с.410.

2. E.V.Smolenzev, V.P. Smolenzev. Improving quality of a linkage of cogwheels/ TWW-97, Konin, 97, p. 135.

3. Б.А.Артамонов и др. Электрофизические и электрохимические методы обработки материалов. t.i. - M.: Высшая школа, 1983.

Формула изобретения

Способ электроэрозионно-химической доводки зубчатых колес, осуществляемый с использованием электроэрозионного и электрохимического генераторов, зубчатых колес в качестве анодов, переключателя полярности и прибора для измерения количества электричества, отличающийся тем, что обработку осуществляют в два этапа: сначала обрабатывают колеса от обоих генераторов до получения нулевого градиента тока с использованием в качестве анода колеса большего диаметра, после чего оставляют подключенным к положительному полюсу электрохимического генератора колесо меньшего диаметра и ведут обработку до удаления лунок от предшествующего этапа, затем переключают полярность и ведут обработку до выравнивания поверхности, при этом количество электричества от электрохимического генератора регулируют пропорционально соотношениям диаметров зубчатых колес.

РИСУНКИ

Рисунок 1



 

Похожие патенты:

Изобретение относится к электрофизическим и электрохимическим методам обработки, в частности к способам управления процессом электроэрозионноэлектрохимического прошивания отверстий в деталях из токопроводящих материалов

Изобретение относится к электрофизическим и электрохимическим методам обработки, в частности касается источников питания для электроэрозионной и электроэрозионно-химической обработки

Изобретение относится к электрофизическим и электрохимическим методам обработки, в частности к электроэрозионнохимической обработке дисковым катодом плоских поверхностей небольшого размера

Изобретение относится к комбинированным методам обработки металлов и сплавов

Изобретение относится к электрофизическим и электрохимическим способам обработки отверстий и может быть использовано при комбинированной электроэрозионно-химической обработке (ЭЭХО) охлаждающих отверстий в турбинных лопатках

Изобретение относится к области машиностроения и может быть использовано при электроэрозионном, эрозионно-химическом нанесении искусственной шероховатости на теплонапряженные детали транспортных машин, в частности, в локальной зоне работы форсунок, подающих горючие смеси в ракетных двигателях

Изобретение относится к комбинированной обработке фасонной обрабатываемой детали и направлено на оптимизацию времени резания, времени обработки и крепления детали

Изобретение относится к области машиностроения и может быть использовано для изготовления инструмента для чистовой обработки осесимметричных деталей, например мелкомодульных твердосплавных долбяков

Изобретение относится к области электрофизической и электрохимической обработки и может быть использовано для обработки деталей с диэлектрическими покрытиями, например, для компонентов ГТД с термозащитными нетокопроводящими керамическими покрытиями. В способе поэтапно воздействуют на деталь с помощью трубчатого электрод-инструмента, подключенного к отрицательному полюсу источника технологического тока, и дополнительного трубчатого электрода, подключенного вместе с деталью к положительному полюсу источника технологического тока, при этом электрод-инструмент вращают вокруг его продольной оси и осуществляют его соответствующее рабочее перемещение. На первом этапе удаляют диэлектрическое покрытие на требуемом участке детали путем подачи в зону обработки через дополнительный электрод токопроводящей рабочей жидкости, осуществляя ее контакт с рабочим концом электрод-инструмента, а на втором этапе осуществляют удаление основного материала детали по заданному профилю путем подачи электролита через электрод-инструмент с одновременным прекращением подачи рабочей жидкости через дополнительный электрод. Изобретение позволяет значительное упростить и снизить трудоемкость процесса обработки деталей, имеющих диэлектрические покрытия, а также повысить качество обработки. 6 ил., 2 пр.

Способ относится к области машиностроения, в частности к термоэрозионной обработке металлических материалов, и может быть использован при электроэрозионной и комбинированной электроэрозионно-химической обработке металлических материалов в жидкой среде. В способе термоэрозионную обработку металлических материалов осуществляют в прокачиваемой жидкой рабочей среде металлическим электродом-инструментом, при этом в поступающую в межэлектродный зазор жидкую рабочую среду вводят легковоспламеняющиеся микрочастицы цинка и магния, размер которых не превышает минимальную величину зазора, и обеспечивают поддержание их объемного содержания в процессе обработки. После достижения электродом-инструментом конечного положения прекращают введение упомянутых микрочастиц в жидкую рабочую среду и при необходимости осуществляют обработку до получения требуемой шероховатости поверхности заготовки. Изобретение позволяет обеспечить возобновление поступления в зону разряда легкоспламеняющихся частиц металлов, способных создавать кумулятивный эффект. 1 з.п. ф-лы, 2 ил., 2 пр.

Изобретение относится к области машиностроения. В способе вначале при электроэрозионной обработке заготовки формируют требуемый профиль зубчатого колеса, а после путем его электрохимической обработки обеспечивают требуемые параметры поверхности. Электроэрозионную обработку осуществляют на проволочно-вырезном станке с числовым программным управлением, обеспечивающим по чертежу детали получение заданного профиля зубчатого колеса с припуском на последующую электрохимическую обработку. При электрохимической обработке зубчатое колесо вводят в зацепление с электрод-инструментом и по вольтметру осуществляют проверку отсутствия короткого замыкания, после чего включают вращение шпинделя и повторно проверяют отсутствие короткого замыкания, затем подают на одну из электродных поверхностей электролит со скоростью истечения из сопла, равной окружной скорости взаимообкатываемых электродных поверхностей, подают напряжение на электроды и производят обработку зубчатого колеса в течение времени t с вращением сначала в одну сторону, после чего включают вращение в противоположную сторону и производят обработку зубчатого колеса в течение такого же периода времени t. Изобретение обеспечивает получение зубчатых колес с требуемыми параметрами точности и шероховатости поверхности. 9 ил., 1 пр.
Наверх