Устройство для ультразвуковой обработки расплава легких сплавов

 

Изобретение относится к области металлургии и может быть использовано при получении слитков алюминиевых сплавов и фасонном литье заэвтектических силуминов поршневой группы. Техническим результатом изобретения является обеспечение стабильности резонансного режима излучения ультразвука в расплав и повышенной кавитационной стойкости в процессе непрерывной работы устройства, что ведет к получению металла с нужными свойствами. Технический результат достигается тем, что устройство для ультразвуковой обработки расплава содержит магнитострикционный преобразователь, концентратор ультразвуковых колебаний и излучатель, выполненный из ниобия, тантала или их сплавов, при этом рабочая часть излучателя покрыта слоем обработанного ультразвуком в режиме кавитации алюминия. Кроме этого, для работы в режиме продольных колебаний излучатель выполнен из отожженных прутков длиной, кратной 1/2 длины волны продольных колебаний ультразвука на частоте его возбуждения, а для работы в режиме изгибных колебаний излучатель выполнен из отожженных листов или плит длиной, кратной 1/2 длины волны изгибных колебаний ультразвука на частоте его возбуждения. 2 з.п. ф-лы, 2 ил., 2 табл.

Изобретение относится к области металлургии и может быть использовано при получении слитков алюминиевых сплавов и фасонном литье заэвтектических силуминов поршневой группы.

Ближайшим аналогом является устройство для ультразвуковой обработки расплава легких сплавов, состоящее из магнитострикционного преобразователя, концентратора ультразвуковых колебаний и излучателя, выполненного в виде кольца совместно с литниковой воронкой (авторское свидетельство СССР 973233, C 22 F 3/02, от 15.11.1982).

Недостатком этого устройства является низкая эффективность излучения ультразвука в расплав. Литниковая воронка является присоединенной массой к колебательной системе, что затрудняет расчет колебательной системы на резонансную частоту и не позволяет точно настроить все ультразвуковое устройство на резонансный режим. Указанные недостатки этого устройства не обеспечивают эффективную передачу ультразвуковой энергии в расплав. Это не позволяет организовать устойчивый режим ультразвуковой обработки в процессе всего непрерывного литья слитка и тем самым обеспечить равномерную структуру слитка по его длине и повысить качество получаемого металла.

Предлагается устройство для ультразвуковой обработки легких сплавов, состоящее из магнитострикционного преобразователя, концентратора ультразвуковых колебаний и излучателя, выполненного из ниобия, тантала и их сплавов.

Рабочая часть излучателя покрыта слоем обработанного ультразвуком в режиме развитой кавитации алюминия.

Для работы в режиме продольных колебании излучатель выполнен из отожженных горячепрессованных прутков длиной, кратной половине длины волны продольных колебаний ультразвука на частоте его возбуждения.

Для работы в режиме изгибных колебаний излучатель выполнен из отожженных листов или плит, длина которых кратна половине длины волны изгибных колебаний ультразвука на частоте его возбуждения.

Предлагаемое устройство для ультразвуковой обработки расплава легких сплавов отличается от ближайшего аналога тем, что излучатель выполнен из ниобия, тантала и их сплавов, при этом рабочая часть излучателя покрыта слоем обработанного ультразвуком в режиме кавитации алюминия. Предлагаемое устройство обеспечивает передачу ультразвука от излучателя непосредственно в расплав.

Для работы в режиме продольных колебаний излучатель выполнен из отожженных горячепрессованных прутков длиной, кратной половине длины волны ультразвука на частоте возбуждения.

Для работы в режиме изгибных колебаний излучатель выполнен из отожженных листов или плит.

Технический результат - стабильность резонансного режима излучения ультразвука в расплав и повышенная кавитационная стойкость в процессе непрерывной работы устройства, что ведет к получению металла с нужными свойствами.

Предлагаемое устройство обеспечивает работу всех звеньев на резонансной частоте. Поверхность излучателя, соприкасающаяся с кавитирующим расплавом, практически не разрушается, т. к. диффузия алюминия в ниобий, тантал и их сплавы крайне мала, что исключает образование на границе контакта с расплавом хрупких и твердых алюминидов. Излучатель сохраняет свои упругие свойства (модуль Юнга) при нагреве от комнатной температуры до температуры обрабатываемого расплава.

Все это приводит к повышению стойкости излучателя и стабильности резонансного режима излучения ультразвука в расплав, позволяя получить равномерную структуру по всей длине слитка и тем самым повысить качество получаемого металла.

Сущность изобретения поясняется чертежом, где на фиг.1 изображено предлагаемое устройство для работы в режиме продольных колебаний; на фиг.2 изображено предлагаемое устройство для работы в режиме изгибных колебаний.

Предлагаемое устройство для ультразвуковой обработки расплава легких сплавов состоит из магнитострикционного преобразователя (1), концентратора ультразвуковых колебаний (2) и излучателя (3), изготовленного из ниобия, тантала и сплавов на их основе.

Были изготовлены устройства для ультразвуковой обработки расплава с излучателями продольных колебаний из отожженных горячепрессованных прутков сплава ниобия с 5% молибдена и излучателями из отожженных горячекатаных плит из технического ниобия. Кроме того, инструмент-излучатель продольных колебаний был изготовлен из технического титана (прототип).

В тигельной печи готовили расплав алюминия высокой чистоты (99,99%) весом до 1 кг. При температуре 700-750oС проводили ультразвуковую обработку расплава на частоте 18 кГц с помощью излучателей продольных колебаний из отожженных прутков длиной 1/2 длины волны ультразвука, равной для ниобия и его сплавов 100 мм и для технического титана 140 мм.

Кроме того, проводили ультразвуковую обработку с помощью излучателя изгибных колебаний из технического ниобия, изготовленного из отожженных плит, длина инструмента кратна 1/2 длины волны изгибных колебаний, что на частоте 18 кГц составляет 12 мм.

Результаты химического анализа алюминия после ультразвуковой обработки (УЗО) от 2 мин до 100 ч с применением излучателей из технического ниобия, сплава ниобия с 5% молибдена и технического титана (аналог) представлены в табл. 1.

Исследовали влияние температуры на изменение упругих характеристик (модуль Юнга) при нагреве излучателей, изготовленных из разных материалов от комнатной температуры до 1000oС (табл. 2).

Таким образом, предлагаемое устройство для ультразвуковой обработки расплава легких сплавов имеет высокую кавитационную стойкость в расплаве алюминия и сохраняет стабильносгь упругих характеристик (модуль Юнга) в широком интервале температур - от комнатной до рабочих температур расплава. Все это позволяет повысить эксплуатационную надежность устройства, позволяя сохранять рабочий режим обработки в процессе всего непрерывного литья слитка.

Формула изобретения

1. Устройство для ультразвуковой обработки расплава легких сплавов, содержащее магнитострикционный преобразователь, концентратор ультразвуковых колебаний и излучатель, отличающееся тем, что излучатель выполнен из ниобия, тантала или их сплавов, при этом рабочая часть излучателя покрыта слоем обработанного ультразвуком в режиме кавитации алюминия.

2. Устройство по п. 1, отличающееся тем, что для работы в режиме продольных колебаний излучатель выполнен из отожженных прутков длиной, кратной 1/2 длины волны продольных колебаний ультразвука на частоте его возбуждения.

3. Устройство по п. 1, отличающееся тем, что для работы в режиме изгибных колебаний излучатель выполнен из отожженных листов или плит длиной, кратной 1/2 длины волны изгибных колебаний ультразвука на частоте его возбуждения.

РИСУНКИ

Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4



 

Похожие патенты:

Изобретение относится к металлургии легких сплавов, в частности к способам ультразвуковой обработки расплава при производстве фасонных отливок из заэвтектических силуминов поршневой группы

Изобретение относится к применению ультразвука при кристаллизации расплавов

Изобретение относится к металлургической промышленности и может быть использовано для акустической обработки расплавов

Изобретение относится к металлургии и литейному производству и может быть использовано для получения отливок, требующих высокой теплопроводности

Изобретение относится к металлургии, в частности к способам обработки расплавов сплавов различных материалов

Изобретение относится к области сплавов, а именно к способу получения чушек из сплава металлов, а также изобретение относится к чушке из сплава

Изобретение относится к области обработки металлов и может быть использовано для регулирования ресурса работы изделий, изготавливаемых из алюминия марки А85 и эксплуатирующихся в условиях ползучести

Изобретение относится к обработке цветных металлов, а именно к изменению физико-механических свойств алюминия

Изобретение относится к обработке алюминия, в частности к регулированию ресурса работы изделий, изготавливаемых из технически чистого алюминия и эксплуатирующихся в условиях ползучести, и может быть использовано в строительстве, производстве двигателей, автомобиле-, авиа- и судостроении, где наибольшее применение находит алюминий и сплавы на его основе. Способ включает измерение относительного изменения скорости ползучести изделия из алюминия, работающего в условиях ползучести, и ускорение или замедление процесса ползучести путем воздействия на изделие постоянным магнитным полем, при этом замедление проводят воздействием магнитным полем с индукцией 0,15-0,3 Тл, а ускорение - воздействием магнитным полем с индукцией 0,01-0,15 Тл. Изобретение позволяет управлять скоростью ползучести технически чистого алюминия в интервале от 55% до 54%, что позволяет изменить долговечность изделий из алюминия, работающих в условиях ползучести. 1 табл., 2 ил.
Изобретение относится к цветной металлургии, в частности к способам получения лигатур на основе алюминия, и может быть использовано при получении лигатуры алюминий-титан-цирконий, применяемой для модифицирования алюминиевых сплавов. Способ получения лигатуры алюминий-титан-цирконий включает плавление бинарных лигатурных сплавов алюминий-титан и алюминий-цирконий при поддержании отношения по массе титана к цирконию от 0,15 до 1,5, нагрев расплава до температуры на 160-300°С выше температуры ликвидуса, перемешивание расплава, воздействие на расплав низкочастотными колебаниями для равномерного распределения алюминидов не менее 1 минуты и проведение кристаллизации расплава со скоростью 103-104 град/с. Техническим результатом изобретения является повышение модифицирующей способности лигатуры за счет образования комплексных метастабильных алюминидов с решеткой, совпадающей с решеткой матрицы модифицируемых алюминиевых сплавов, и их равномерного распределения в сплаве лигатуры. 1 з.п. ф-лы, 3 пр., 1 табл.

Изобретение относится к металлургической и электрохимической промышленности и может быть использовано при изготовлении сплавов для аккумуляторов водорода. На сплав в режиме кристаллизации и охлаждения подают постоянный ток с наложением на его несущую модулированного сигнала в виде импульсного переменного тока. Постоянный ток протекает по всему объему сплава, а переменный ток - по поверхности сплава. Методом модуляции сигнала переменного импульсного тока кристаллы сплава резко изменяют свою внутреннюю полярность при каждом изменении полярности импульсного тока. В начальный момент кристаллизации это приводит к разрушению нормального режима кристаллизации. Появляются многочисленные дефекты структуры кристаллов. Рост величины кристаллов сильно ограничивается, и создаются новые кристаллы с дефектной структурой. Дефекты структуры являются центрами проникновения атомов водорода при зарядке аккумуляторов водорода. Обеспечивается получение однородных по структуре дефектных кристаллов во всем объеме сплава.
Наверх