Способ изготовления твердотельного прибора

 

Изобретение относится к полупроводниковой электронике и может быть использовано при изготовлении твердотельных приборов и их электродов. Способ включает формирование контактной площадки (КП) на подложке (П), покрытие полученной структуры слоем диэлектрика (Д), удаление Д над КП и прикрепление к КП проводника. Дополнительно способ предусматривает оставление не заполненных материалом окон в КП при ее формировании и оставление Д в окнах при удалении его над КП. Соблюдение ряда условий на площадь окон в КП и на удельные силы сцепления материалов друг с другом обеспечивает повышение механической прочности структуры "КП - П" за счет взаимодействия материала КП с Д в окнах. Изобретение позволяет увеличить усилие отрыва контактной площадки с прикрепленным к ней проводником от подложки, что повышает надежность прибора. 2 ил.

Изобретение относится к полупроводниковой электронике и может быть применено при изготовлении твердотельных приборов и их электродов.

Известен способ изготовления твердотельного прибора, включающий формирование на поверхности подложки контактной площадки из проводящего материала, присоединение проводника к контактной площадке и заполнение корпуса прибора с подложкой специальным компаундом для пассивации поверхности подложки [1].

Значительная вязкость компаунда при заливке, его деформация при затвердевании, отличный от материала подложки и проводников температурный коэффициент расширения приводят к дополнительным механическим воздействиям на контакт проводника и контактной площадки, что снижает надежность прибора. Сохранение надежностных характеристик за счет увеличения площади контакта проводника с площадкой вынуждает использовать проводники большой площади поперечного сечения. Это приводит к увеличению площади контактной площадки и ее паразитной электрической емкости. Названные факторы ограничивают применение данного способа.

Наиболее близким по совокупности признаков является способ изготовления твердотельного прибора [2], в котором также формируют контактную площадку из проводящего материала на части поверхности подложки, затем покрывают поверхность подложки и контактной площадки пассивирующим слоем диэлектрика, удельная (на единицу площади) сила сцепления которого с подложкой больше удельной силы сцепления с подложкой контактной площадки, после этого удаляют диэлектрик над контактной площадкой и присоединяют к контактной площадке проводник, усилие отрыва которого от контактной площадки больше усилия отрыва контактной площадки от подложки. При таком способе изготовления прибора выбор площади поперечного сечения проводника определяется только плотностью протекающего по нему тока, что позволяет уменьшить площадь поперечного сечения проводника и, следовательно, площадь контактной площадки и ее паразитную электрическую емкость.

Малая сила сцепления контактной площадки с подложкой часто приводит к ее отслаиванию, что выводит прибор из строя.

Заявляемое изобретение предназначено для увеличения усилия отрыва контактной площадки от подложки, и при его осуществлении может быть повышена надежность прибора.

Вышеуказанная задача решается тем, что в известном способе изготовления твердотельного прибора, включающем формирование на части поверхности подложки контактной площадки из проводящего материала, покрытие поверхности подложки и контактной площадки слоем диэлектрика, удельная сила сцепления которого с подложкой больше удельной силы сцепления с подложкой контактной площадки пл-п, удаление диэлектрика над контактной площадкой и прикрепление к площадке проводника, удельная сила сцепления которого с материалом площадки м больше величины пл-п, согласно изобретению при формировании контактной площадки внутри ее площади оставляют по крайней мере одно окно, незаполненное проводящим материалом, а при удалении диэлектрика над контактной площадкой оставляют его в окне, причем площадь окон Sо и общая с окнами площадь контактной площадки внутри ее внешних границ Sпл удовлетворяют условиям Soпп-п<Pdплпл-д; (1) Sплпл-п<Sм+Sмод, (2) где Ро - периметр окон; dпл - толщина площадки; пл-д - удельная сила сцепления контактной площадки с диэлектриком; Sмо и Sм - площади контакта проводника соответственно с диэлектриком в окнах и с материалом контактной площадки; д - удельная сила сцепления проводника с диэлектриком в окнах.

Получаемый при осуществлении изобретения технический результат, а именно повышение надежности твердотельного прибора, достигается за счет того, что наличие в контактной площадке окон, заполненных диэлектриком, обладающим сравнительно большой удельной силой сцепления как с материалом подложки, так и с материалом площадки, при выполнении условий (1) и (2) приводит к увеличению усилия отрыва площадки от подложки.

Так, в способе-прототипе сила отрыва контактной площадки от подложки F1 = Sплпл-п. (3) В предложенном способе сила отрыва контактной площадки от подложки F2 = (Sпл-S0)пл-п+Sбпл-д, (4) где Sб = P0dплпл-д - (5) площадь боковой внутренней поверхности окон, контактирующей с диэлектриком. Для достижения положительного эффекта должно выполняться условие
F2 > F1,
которое обеспечивается выполнением неравенства (1) - первого условия формулы изобретения.

В предложенном способе окна в контактной площадке могут попадать в область контакта площадки с проводником, что вызывает по сравнению с прототипом силы отрыва f1 проводника от контактной площадки из-за меньшей, в большинстве случаев, удельной силы сцепления проводника с диэлектриком д в окне по сравнению с удельной силой сцепления проводника с материалом контактной площадки м. Чтобы это уменьшение не препятствовало достижению положительного эффекта, получаемая в предложенном способе сила отрыва проводника от контактной площадки с окнами
f2 = Sмм+Sдд (6)
должна быть больше силы отрыва контактной площадки от подложки в прототипе, т.е.

F1 < f2.

Это условие обеспечивается выполнением неравенства (2) - второго условия формулы изобретения.

На фиг.1 изображен общий вид сверху твердотельного прибора, при изготовлении которого реализован предложенный способ; на фиг.2 - сечение этого прибора по линии АА. Здесь показаны: подложка 1, контактная площадка 2 с окнами 3, слой диэлектрика 4, частично расположенный в окнах 3, проводник 5.

Когда при реализации предлагаемого способа оставляют окна 3 в площадке 2 и заполняют их диэлектриком с выполнением условий (1) и (2), уменьшение силы сцепления площадки с подложкой 1 за счет убыли площади их сцепления на величину площади окон с избытком компенсируется силой сцепления площадки с диэлектриком, с которым она контактирует боковой поверхностью окон 3. Усилие отрыва контактной площадки 2 от подложки 1 увеличивается и приближается к усилию отрыва проводника 5 от площадки 2. Несмотря на возможное уменьшение силы сцепления проводника с площадкой, эта сила при соблюдении условия (2) превышает силу сцепления площадки с подложкой в приборе, изготовленном способом-прототипом. Все это приводит к увеличению усилия разрушения структуры "подложка - площадка - проводник" и в итоге - к повышению надежности твердотельного прибора.

Пример. При реализации заявляемого изобретения в процессе изготовления твердотельного прибора на поверхности окиси кремния, термически выращенной на кремниевой подложке, из слоя алюминия толщиной 2,5 мкм было сформировано 8 одинаковых контактных площадок прямоугольной формы с размерами 120х80 мкм2. В пределах каждой площадки было сформировано 150 квадратных окон размером 4х4 мкм2 каждое, расположенных в 15 рядов по 10 окон в ряду с расстоянием между смежными краями окон в рядах 4 мкм и междурядным расстоянием 4 мкм. В другой реализации заявляемого изобретения в пределах каждой площадки было сформировано 96 таких же окон, расположенных в 12 рядов по 8 окон в ряду с расстоянием между смежными краями окон 6 мкм. Поверхности подложек вместе с площадками покрывали пиролитическим окислом кремния, который после удаления его с площадок оставался в окнах. К каждой площадке методом термокомпрессии присоединялся проволочный проводник диаметром 50 мкм. Среднее усилие отрыва площадки, измеренное высокочувствительным динамометром, составило для первой реализации 15,1110-3 Н, для второй реализации - 13,4510-3 Н при скорости нарастания тянущей силы не более 10-3 Н/с. Для сравнения, среднее усилие отрыва контактной площадки в виде сплошного прямоугольника тех же размеров составило 11,3710-3 Н при тех же условиях измерений.

ЛИТЕРАТУРА
1. Конструирование и технология микросхем. / Коледов Л.А., Волков В.А., Докучаев Н.И. и др. Под ред. Коледова Л.А. - М.: Высш. шк., 1984, с. 183.

2. Там же - с. 170 и 171 - прототип.


Формула изобретения

Способ изготовления твердотельного прибора, включающий формирование на части поверхности подложки контактной площадки из проводящего материала, покрытие поверхности подложки и контактной площадки слоем диэлектрика, удельная сила сцепления которого с подложкой больше удельной силы сцепления с подложкой контактной площадки пл-п, удаление диэлектрика над контактной площадкой и прикрепление к площадке проводника, удельная сила сцепления которого с материалом площадки м больше величины пл-п, отличающийся тем, что при формировании контактной площадки внутри ее площади оставляют по крайней мере одно окно, не заполненное проводящим материалом, а при удалении диэлектрика над контактной площадкой оставляют его в окне, причем площадь окон Sо и общая с окнами площадь контактной площадки внутри ее внешних границ Sпл удовлетворяют условиям
Soпп-п<Pdплпл-д;
Sплпл-п<Sм+Sмод,
где Ро - периметр окон;
dпл - толщина площадки;
пл-д - удельная сила сцепления контактной площадки с диэлектриком;
Sмо и Sм - площади контакта проводника соответственно с диэлектриком в окнах и с материалом контактной площадки;
д - удельная сила сцепления проводника с диэлектриком в окнах.

РИСУНКИ

Рисунок 1, Рисунок 2



 

Похожие патенты:

Изобретение относится к области тонкопленочной технологии и предназначено для использования в микроэлектронике и интегральной оптике

Изобретение относится к MOS полупроводниковому запоминающему устройству, в частности к полупроводниковому устройству, повышающему высокотемпературную стабильность силицида титана, применяемого для изготовления вентильной линии полицида в DRAM (памяти произвольного доступа)

Изобретение относится к полупроводниковой электронике и может быть использовано при формировании металлизации полупроводниковых приборов на основе моносульфида самария с использованием методов термического испарения, магнетронного и ионно-плазменного распыления и др

Изобретение относится к электрохимии (гальванотехнике), в частности к получению никелевых покрытий с низким переходным сопротивлением, например, для омических контактов к полупроводниковым материалам

Изобретение относится к полупроводниковой электронике и может быть использовано при формировании СБИС ЗУ на арсениде галлия
Изобретение относится к микроэлектронике и может быть использовано в производстве полупроводниковых приборов и интегральных схем

Изобретение относится к приборам микро- электромеханических систем (МЭМС), в частности к их изготовлению на стандартных пластинах кремния

Изобретение относится к технологии изготовления многоуровневой металлизации интегральных схем

Изобретение относится к технологии производства полупроводниковых приборов, в частности к технологии изготовления контактов с пониженным сопротивлением. В способе изготовления полупроводникового прибора формируют контакты на основе силицида платины. Для этого наносят пленку платины толщиной 35-45 нм электронно-лучевым испарением на кремниевую подложку, нагретую предварительно до 350°C, со скоростью осаждения 5 нм/мин. Затем проводят термообработку в три этапа: 1 этап - при температуре 200°C в течение 15 мин, 2 этап - при температуре 300°C в течение 10 мин и 3 этап - при температуре 550°C в течение 15 мин в форминг-газе, при смеси газов N2:H2=9:1. Предлагаемый способ изготовления полупроводникового прибора обеспечивает снижение сопротивления контакта, повышение технологичности, улучшение параметров приборов, повышение качества и увеличение процента выхода годных. 1 табл.

Изобретение относится к области технологии производства полупроводниковых приборов, в частности к технологии формирования силицидных слоев с низким сопротивлением. Изобретение обеспечивает снижение сопротивления, повышение технологичности, улучшение параметров, повышение качества и увеличение процента выхода годных. В способе изготовления полупроводниковых приборов на пластине кремния формируют аморфный слой имплантацией ионов кремния с энергией 50 кэВ, дозой 5⋅1015 см-2, при температуре подложки 25°С. Перед нанесением слоя палладия подложку последовательно протравливают в азотной, серной и плавиковой кислотах, затем промывают деионизованной водой. Слой палладия наносят при температуре 25-100°С толщиной 0,1 мкм, со скоростью 1,5 нм/сек. После нанесения слоя палладия проводят термообработку в вакууме при давлении (2-8)⋅105 мм рт.ст., температуре 250°С в течение 20-30 мин. В результате образуется силицид палладия Pd2Si. 1 табл.

Изобретение относится к технологии силовой электроники, а именно к технологии получения дискретных силовых транзисторов на основе нитрида галлия (GaN), работающих в режиме обогащения. В способе увеличения порогового напряжения отпирания GaN транзистора, включающем создание на поверхности кремниевой пластины с эпитаксиальной гетероструктурой типа p-GaN/AlGaN/GaN подзатворной р-GaN меза-области, межприборной меза-изоляции, формирование омических контактов к областям стока и истока транзистора, формирование двухслойной резистивной маски литографическими методами, очистку поверхности полупроводника, осаждение тонких пленок затворной металлизации, извлечение пластины из вакуумной камеры установки напыления, удаление резистивной маски, перед напылением тонких пленок затворной металлизации пластину подвергают обработке в атмосфере атомарного водорода в течение t=10-60 секунд при температуре Т=20-150°С и плотности потока атомов водорода на поверхность пластины, равной 1013-1016 ат. см-2 с-1. Изобретение обеспечивает увеличение порогового напряжения отпирания GaN транзистора при использовании пленок барьерных металлов к p-GaN подзатворной области с высокой работой выхода электронов. 4 з.п. ф-лы, 3 ил.
Наверх