Способ кислородной пассивации и очистки стальных труб

 

Изобретение относится к области защиты от коррозии и может быть использовано на предприятиях, выпускающих и эксплуатирующих стальные изделия, главным образом трубы. При пассивации и очистки стальных труб путем обработки их кислородсодержащим агентом, в качестве последнего используют воздух с добавлением кислорода или азота до концентрации не более 1,2 г/л, а обработку производят в течение 0,5-50,0 мин при скорости потока агента 50-200 м/с и 300-500oС. Технический результат - обеспечение эффективной и экологически чистой пассивации и очистки без использования пара, горячей воды или кислот среды.

Изобретение относится к области защиты от коррозии и может быть использовано на предприятиях, выпускающих и эксплуатирующих стальные изделия. В частности, стальные трубы различного диаметра и протяженности, выпускаемые промышленностью в широком ассортименте для разнообразных сфер применения, нуждаются в эффективной защите от коррозии, в особенности их труднодоступной внутренней поверхности.

Известны способы пассивации и очистки внутренней поверхности стальных котельных труб парогенераторов тепловых электростанций путем пропускания через трубы кислородсодержащего пара [1] или питательной воды [2]. Такие способы применительно к тепловым электростанциям достаточно эффективны, но не могут быть использованы на изготавливающих трубы предприятиях и в эксплуатационных условиях (прокладка трубных магистралей) при отсутствии пара или горячей воды.

Известен способ пассивации и очистки стальных труб путем обработки их кислородсодержащим агентом, в качестве которого используют раствор газообразного кислорода в кислой жидкой среде [3] - прототип. Такой способ позволяет проводить кислородную пассивацию одновременно с кислотной очисткой внутренней поверхности труб, однако применение кислотных сред нежелательно в экологическом отношении.

Задача изобретения заключается в том, чтобы обеспечить эффективную и экологически чистую пассивацию и очистку внутренней поверхности стальных труб без использования пара, горячей воды или кислой среды.

Эта задача достигается тем, что при пассивации и очистке стальных труб путем обработки их кислородсодержащим агентом согласно изобретению в качестве кислородсодержащего агента используют воздух с добавлением кислорода или азота до концентрации не более 1,2 г/л, а обработку производят в течение 0,5-50,0 минут при скорости потока агента 50-200 м/с и 300-500oС.

Необходимую температуру в зоне воздействия проще всего и с максимальной степенью эффективности можно осуществить путем пропускания через трубы электрического тока или (при обработке внутренней поверхности труб) путем наружного обогрева труб, например с помощью индукционных аппаратов.

Пример 1. Стальную трубу с внутренним диаметром 50 мм при толщине стенки 3,5 мм, длиной 5 м, с внутренним слоем коррозионных отложений средней толщины 0,1 мм обогревали снаружи с помощью индукционного аппарата для термообработки до температуры стенки 300oС. Внутрь трубы в течение 1 мин при давлении 0,12 МПа подавался воздух с добавлением кислорода. Концентрация кислорода в воздухе составляла 0,65 г/л. В результате обработки внутренняя поверхность трубы очистилась от продуктов коррозии, и на ней образовалась тонкая пассивирующая защитная пленка.

Пример 2. Стальную трубу, такую же, как в примере 1, обогревали аналогичным образом до температуры стенки 450oС. Внутрь трубы в течение 0,5 мин при давлении 0,6 МПа подавался воздух с добавлением кислорода. Концентрация кислорода в воздухе составляла 0,35 г/л. Так же, как в предыдущем примере, внутренняя поверхность трубы очистилась от продуктов коррозии, и на ней образовалась тонкая пассивирующая защитная пленка.

Пример 3. Стальную трубу, такую же, как в примерах 1 и 2, обогревали аналогичным образом до температуры стенки 500oС. Внутрь трубы в течение 3,0 мин при давлении 0,6 МПа подавался воздух, разбавленный азотом до концентрации кислорода 0,15 г/л. Так же, как в предыдущих примерах, внутренняя поверхность трубы очистилась от продуктов коррозии, и на ней образовалась тонкая пассивирующая защитная пленка.

Таким образом, способ в соответствии с настоящим изобретением обеспечивает эффективную, экологически чистую пассивацию и очистку стальных труб от коррозионных отложений без необходимости применения пара, горячей воды или кислой среды.

Источники информации 1. Авторское свидетельство СССР 976761, 3 МКИ F 22 B 37/48, 1980.

2. Патент РФ 2064151, 6 МКИ F 28 G 13/00, 1993.

3. Патентная заявка РФ 95101706, 6 МКИ F 28 G 9/00, 1995.

Формула изобретения

Способ пассивации и очистки стальных труб путем обработки их кислородсодержащим агентом, отличающийся тем, что в качестве кислородсодержащего агента используют воздух с добавлением кислорода или азота до концентрации не более 1,2 г/л, а обработку производят в течение 0,5-50,0 мин при скорости потока агента 50-200 м/с и 300-500oС.



 

Похожие патенты:

Изобретение относится к теплотехнике и может быть использовано в энергетике, транспорте и ядерных технологиях

Изобретение относится к теплоэнергетике и может быть использовано для послемонтажной и эксплуатационной очистки и пассивации тракта рабочей среды прямоточных котлов

Изобретение относится к промышленной теплотехнике, в частности к устройствам для очистки поверхностей нагрева котлов и теплообменных аппаратов от наружных отложений, и может быть использовано в энерготехнологических установках в металлургической, химической и др

Изобретение относится к теплоэнергетике и может быть использовано в работающих на твердом топливе котлах

Изобретение относится к целлюлозно-бумажной промьшшенности, а именно к устройствам для очистки поверхностей нагрева содорегенерационного агрегата, в которых осуществляется сжигание регенерируемого щелока

Изобретение относится к энергомашиностроению , в частности к устройствам для моделирования процессов образования отложений и коррозии в теплообменных трубах

Изобретение относится к металлургии, к переработке скрапа, а именно отходов металлургических и металлообрабатывающих заводов, в составе которых содержатся металлы и масло, для получения сырья, используемого в последующем металлургическом переделе

Изобретение относится к области нефтедобычи

Изобретение относится к химической поверхностной обработке металлических изделий путем взаимодействия их поверхности с реакционным средством Состав для обезвреживания и защиты поверхности металлов, имевших контакт с несимметричным диметилгидразином (НДМГ), состоящий из водного раствора 0,5 - 0,6 мас

Изобретение относится к нефтяной промышленности и может найти применение при удалении асфальтено-смолопарафиновых отложений (АСПО) в процессе добычи нефти
Изобретение относится к области очистки систем канализации от жировых и органических отложений и может быть применено в предприятиях пищевой промышленности и общественного питания

Изобретение относится к концентрату очистителя для очистки медицинских и/или хирургических инструментов и/или аппаратуры, содержащему по крайней мере одно ионное поверхностно-активное вещество, по крайней мере один солюбилизатор, по крайней мере один обычный протеолитический энзим и воду, отличающийся тем, что в качестве ионного поверхностно-активного вещества он содержит соль (С5-С12) алкилсульфата и дополнительно содержит по крайней мере один алканоламин при следующем соотношении компонентов, вес.%: соль (С5-С12) алкилсульфата 0,5-8,0, солюбилизатор 4,0-15,0, алканоламин 4,0-10,0, протеолитический энзим в количестве 0,005-0,1 Энсон ед/г очистителя, вода - до 100
Изобретение относится к технологии повышения эксплуатационной надежности радиоэлектронных изделий

Изобретение относится к композиции для холодной очистки твердых поверхностей, в неводной среде, на основе смеси алканов или циклоалканов и по крайней мере одного органического соединения, содержащего по крайней мере одну кетонную функцию

Изобретение относится к способам очистки металлических поверхностей элементов энергетических установок, в частности топливных систем авиационных двигателей, от твердых углеродистых и асфальтено-смолистых отложений

Изобретение относится к способам создания коррозионно-стойкого оксидного покрытия на перлитных сталях и может быть использовано для защиты от коррозии энергетического оборудования в стояночных, переходных и стационарных режимах
Наверх