Компонент теплозащитного экрана, через который проходит под давлением охлаждающая среда, и теплозащитный экран для компонента, через который проходит горячий газ

 

Компонент и экран предназначены для использования в энергомашиностроении. Компонент (1) теплозащитного экрана, через который проходит под давлением охлаждающая среда, содержит подлежащую охлаждению стенку (2) горячего газа, входной канал (3) для охлаждающей среды (4) и выходной канал (5) для охлаждающей среды (4), причем входной канал (3) направлен в сторону стенки (2) горячего газа и расширяется в направлении стенки (2) горячего газа. Теплозащитный экран (20) образует футеровку компонента, через который проходит горячий газ, в частности камеры сгорания газотурбинной установки (10), и имеет множество компонентов (1) теплозащитного экрана, через которые проходит под давлением охлаждающая среда. Изобретение снижает потери охлаждающей среды. 2 с. и 14 з.п.ф-лы, 4 ил.

Изобретение относится к компоненту теплозащитного экрана с подлежащей охлаждению стенкой горячего газа, а также теплозащитному экрану, который покрывает компонент, через который проходит горячий газ, в частности, камеру сгорания газотурбинной установки, и имеет множество компонентов теплозащитного экрана.

В ЕР 0 224 817 В 1 описан теплозащитный экран, в частности, для структурных элементов газотурбинной установки. Теплозащитный экран служит для защиты несущей конструкции от горячей среды, в частности для защиты стенки канала горячего газа в газотурбинной установке. Теплозащитный экран имеет состоящую из жаростойкого материала футеровку, которая состоит из покрывающих поверхность элементов теплозащитного экрана, закрепленных на несущей конструкции. Эти элементы теплозащитного экрана расположены рядом друг с другом с оставлением зазоров для прохождения охлаждающей среды и с возможностью теплового смещения. Каждый такой элемент теплозащитного экрана выполнен наподобие гриба со шляпкой и стержнем. Шляпка является плоским или объемным, многоугольным пластинчатым корпусом с прямыми или закругленными кромками. Стержень соединяет центральную область пластинчатого корпуса с несущей конструкцией. Шляпка имеет предпочтительно треугольную форму, благодаря чему можно с помощью идентичных шляпок выполнять внутреннюю футеровку почти любой геометрической формы. Шляпки, а также при необходимости другие части элементов теплозащитного экрана состоят из высокожаропрочного материала, в частности стали. Несущая конструкция имеет отверстия, через которые охлаждающая среда, в частности воздух, может входить в промежуточное пространство между шляпкой и несущей конструкцией и оттуда через щели для прохождения охлаждающей среды может проходить в окруженную элементами теплозащитного экрана пространственную область, например камеру сгорания газотурбинной установки. Этот поток охлаждающей среды уменьшает проникновение горячего газа в промежуточное пространство.

В US-PS 5 216 886 описана металлическая футеровка для камеры сгорания. Эта футеровка состоит из множества расположенных рядом друг с другом кубических полых деталей (ячеек), которые закреплены на общей металлической плите. Общая металлическая плита имеет приданное каждой кубической ячейке отверстие для входа охлаждающей среды. Кубические ячейки расположены рядом друг с другом с оставлением щелей. Они содержат в каждой боковой стенке вблизи общей металлической плиты отверстие для выхода охлаждающей среды. Тем самым охлаждающая среда попадает в щель между соседними кубическими ячейками, проходит через эту щель и образует на подверженной действию горячего газа, направленной параллельно металлической плите поверхности охлаждающую пленку. При описанной в US-PS 5 216 886 конструкции стенки образуется открытая охлаждающая система, в которой охлаждающая среда через конструкцию стенки, через ячейки попадает внутрь камеры сгорания. Тем самым охлаждающую среду нельзя использовать для других целей охлаждения.

В DE 35 42 532 A1 описана стенка, в частности, для газотурбинной установки, которая имеет каналы для охлаждающей среды. Стенка в газотурбинной установке расположена предпочтительно между горячим пространством и пространством охлаждающей среды. Она составлена из отдельных стенных элементов, причем каждый стенной элемент является изготовленным из высокожаропрочного материала пластинчатым корпусом. Каждый пластинчатый корпус имеет распределенные по поверхности основания, параллельные друг другу охлаждающие каналы, которые на одном конце соединены с пространством охлаждающей среды, а на другом конце - с горячим пространством. Входящая в горячее пространство, проходящая по каналам охлаждающая среда образует на обращенной к горячему пространству поверхности стенного элемента и/или соседних стенных элементов пленку из охлаждающей среды.

Задачей изобретения является создание компонента теплозащитного экрана, выполненного с возможностью охлаждения охлаждающей средой, а также теплозащитный экран с компонентами теплозащитного экрана, так что при охлаждении компонента теплозащитного экрана в крайнем случае возникает незначительная потеря охлаждающей среды и/или незначительная потеря давления.

Задача, относящаяся к компоненту теплозащитного экрана, решается согласно изобретению с помощью компонента, который имеет внутреннее пространство, подлежащую охлаждению, граничащую с внутренним пространством стенку горячего газа, входной канал и выходной канал для охлаждающей среды, причем входной канал направлен в сторону стенки горячего газа и расширяется в направлении стенки горячего газа, и выходной канал для отвода охлаждающей среды выполнен с возможностью соединения с отводящим каналом. Входной канал, выходной канал и сплошная стенка горячего газа обеспечивают прохождение охлаждающей среды полностью под давлением, так что за счет охлаждения компонента теплозащитного экрана не возникает никаких потерь охлаждающей среды.

Входной канал предпочтительно закрыт защитной стенкой, например отражательной перегородкой, которая расположена вблизи стенки горячего газа и имеет отверстия для направления потока охлаждающей среды. Расширение входного канала, которое закрыто имеющей отверстия защитной стенкой, обеспечивает ударно-отражательное охлаждение стенки горячего газа по всей ее внутренней поверхности. Компонент теплозащитного экрана состоит предпочтительно из жаропрочного материала, металла или металлического сплава, который отлит, в частности, с высокой точностью (точное литье).

Улучшения охлаждения можно достичь за счет того, что стенка горячего газа на ее внутренней поверхности имеет ребра охлаждения. Вдоль этих ребер охлаждения проходит попавшая на стенку горячего газа через закрывающую пластину охлаждающая среда. Ребра охлаждения могут быть соединены с закрывающей пластиной, т.е. с отражательной перегородкой.

Входной канал выполнен предпочтительно с возможностью подвода воздуха из компрессора газотурбинной установки. Проводимый через компонент теплозащитного экрана воздух выходит через выходной канал предпочтительно в камеру сгорания, в одну или несколько горелок и/или в компрессор газотурбинной установки.

При полном отводе охлаждающего воздуха из внутреннего пространства компонента теплозащитного экрана не происходит смешивания горячего газа и охлаждающей среды, в частности охлаждающего воздуха, так что в газотурбинной установке может быть при необходимости установлена низкая температура горячего газа. Это связано с уменьшением образования угарного газа. За счет закрытого обратного вывода охлаждающего воздуха не возникает также обтекания кромок компонента теплозащитного экрана, так что в его материале, т.е. в металле, может быть установлено гармоничное распределение температуры с небольшими тепловыми напряжениями.

Снабжение компонента теплозащитного экрана охлаждающим воздухом и отвод нагретого охлаждающего воздуха в горелку газотурбинной установки происходит предпочтительно через подающие каналы с параллельными осями. Каналы можно любым образом расширять в радиальном направлении и согласовывать их поперечные сечения с необходимым количеством охлаждающего воздуха. Таким образом, все компоненты теплозащитного экрана имеют в основном идентичные условия входа охлаждающего воздуха. Путь потока к компонентам теплозащитного экрана, соответственно, нагретого охлаждающего воздуха к горелке вследствие его короткой длины связан лишь с незначительными потерями давления. Снабжение компонентов теплозащитного экрана, расположенных на внешней стороне осесимметричного компонента, через который проходит горячий газ, в частности камеры сгорания газотурбинной установки, происходит предпочтительно через направляющие лопатки первого ряда направляющих лопаток газовой турбины. Если проходящее через направляющие лопатки количество охлаждающего воздуха недостаточно для достаточного охлаждения компонентов теплозащитного экрана, то, естественно, возможно проводить снабжающие каналы на компоненте, через который проходит горячий газ, в частности камере сгорания, минуя ее внешнюю сторону.

Отвод нагретого охлаждающего воздуха происходит предпочтительно через отдельные отводящие каналы, которые ведут непосредственно к горелке газотурбинной установки. Возможно также выводить выходной канал компонента теплозащитного экрана непосредственно в главный канал, по которому сжатый воздух подводят к горелке. За счет этого можно отобранное в компонентах теплозащитного экрана тепло особенно благоприятным образом снова вводить в газотурбинный процесс.

Проходящая от стенки горячего газа в направлении несущей конструкции внешняя стенка компонента теплозащитного экрана может быть выполнена в области стенки горячего газа по меньшей мере частично волнообразной. За счет этого переход внешней стенки от области, на которую воздействует горячий газ, к расположенной вблизи несущей конструкции холодной области может быть выполнен с возможностью уменьшения напряжений. Входной канал внутри компонента теплозащитного экрана окружен выходным каналом. Он может расширяться в направлении закрывающей пластины в виде воронки.

Для крепления на несущей конструкции компонента, через который проходит горячий газ, в частности камеры сгорания газотурбинной установки, компонент теплозащитного экрана имеет предпочтительно крепежную часть, которая окружает входной канал и выходной канал. Эта крепежная часть имеет предпочтительно нижнюю часть, которая проходит параллельно несущей конструкции и крепится там, например, с помощью винтов.

Компонент теплозащитного экрана имеет предпочтительно внешнюю стенку, примыкающую к стенке горячего газа, которая по меньшей мере частично имеет опорный уступ. На этом опорном уступе может быть расположен крепежный компонент, например, своей головкой, причем крепежный компонент выполнен с возможностью соединения с несущей конструкцией камеры сгорания. Таким образом, крепежный компонент обеспечивает удерживание компонента теплозащитного экрана на несущей конструкции и обеспечивает возможность беспрепятственного расширения компонента теплозащитного экрана вследствие тепловой нагрузки. Крепежный компонент может быть винтом, который отлит с высокой точностью.

Стенка горячего газа имеет предпочтительно толщину стенки менее 10 мм. Толщина стенки составляет предпочтительно 3-5 мм, за счет чего на основании небольшого различия температур между внутренней и внешней поверхностями может быть достигнута высокая стойкость к переменным нагрузкам компонентов теплозащитного экрана.

Задача, относящаяся к теплозащитному экрану для футеровки компонента, через который проходит горячий газ, в частности камеры сгорания газотурбинной установки, решается с помощью теплозащитного экрана, который имеет множество компонентов теплозащитного экрана, через которые проходит под давлением охлаждающая среда. Компонент теплозащитного экрана имеет подлежащую охлаждению стенку горячего газа, которая ее внешней поверхностью обращена к горячему газу, который проходит через камеру сгорания. Компонент теплозащитного экрана позволяет осуществлять закрытое прохождение охлаждающего воздуха без потерь охлаждающего воздуха, причем охлаждающий воздух можно подводить через входной канал, который расширяется в сторону стенки горячего газа, и выводить через выходной канал. Во входной канал охлаждающую среду подводят по подводящему каналу, который соединен, например, с компрессором газотурбинной установки. Выходящая из выходного канала подогретая охлаждающая среда подается в отводящий канал и оттуда попадает в горелку газотурбинной установки. По меньшей мере один подводящий канал проходит предпочтительно через направляющую лопатку газотурбинной установки.

Каждый компонент теплозащитного экрана имеет обращенную ее внешней поверхностью к созданной для направления горячего газа области потока стенку горячего газа, на которую может подаваться через входной канал охлаждающая среда по принципу ударно-отражательного охлаждения, и отраженная от стенки горячего газа охлаждающая среда через выходной канал снова выводится из компонента теплозащитного экрана. Таким образом, входящая в компонент теплозащитного экрана охлаждающая среда, в частности воздух, полностью выводится из него и находится в распоряжении для подачи в термодинамический цикл газотурбинной установки.

Компонент теплозащитного экрана имеет предпочтительно на своей внешней стенке опорный уступ, к которому прилегает крепежный компонент своей головкой. Крепежный компонент через соединенную с головкой стержневую часть укреплен на несущей конструкции, за счет чего компонент теплозащитного экрана расположен на несущей конструкции с возможностью перемещения под действием тепла. Стержневая часть закреплена на несущей конструкции предпочтительно эластично, например, с помощью пружинного устройства, так что обеспечивается подвижное под действием тепла, но несмотря на это прочное соединение между крепежным компонентом и компонентом теплозащитного экрана. Крепежный компонент имеет предпочтительно охлаждающий канал, через который может проходить охлаждающая среда, и поэтому достаточно охлаждается. Охлаждающий канал может быть открытым в сторону внутреннего пространства компонента, через который проходит горячий газ, так что охлаждающая среда в небольших количествах входит в это внутреннее пространство. Даже в этом случае потери охлаждающей среды являются крайне незначительными.

Ниже на примере выполнения поясняется подробней элемент теплозащитного экрана, а также теплозащитный экран с помощью чертежей, на которых частично схематично и без соблюдения масштаба изображено: Фиг. 1 - газотурбинная установка с кольцевой камерой сгорания в частичном разрезе в продольном направлении, Фиг. 2 - кольцевая камера сгорания в продольном разрезе и в увеличенном масштабе и Фиг. 3 и 4 - теплозащитные экраны кольцевой камеры сгорания в продольном разрезе.

На фиг. 1 показана газотурбинная установка 10 в частичном продольном разрезе. Газотурбинная установка 10 имеет вал 26 и расположенные в осевом направлении друг за другом компрессор 9, кольцевую камеру сгорания 11, а также лопатки (направляющие лопатки 18, рабочие лопатки 27). В компрессоре 9 сжимают и нагревают необходимый для сгорания воздух, который в качестве охлаждающей среды 4 (фиг. 2, 3, 4) подводят к теплозащитному экрану 20. Сжатый воздух подводят к ряду горелок 25, которые по кольцу расположены вокруг кольцевой камеры сгорания 11. Сжигаемое в горелке 25 вместе со сжатым воздухом не изображенное топливо образует в камере сгорания 11 горячий газ 29, который из камеры сгорания 11 входит в лопатки газотурбинной установки 10 (направляющие лопатки 18, рабочие лопатки 27) и тем самым вызывает вращение вала 26.

Показанная на фиг. 2 в увеличенном масштабе камера сгорания 11 имеет теплозащитный экран 20, который выполнен из множества компонентов 1 теплозащитного экрана. Сжатый в компрессоре 9 воздух по подводящему каналу 12 подводят вдоль камеры сгорания 11 к каждому компоненту 1 теплозащитного экрана. Часть сжатого в компрессоре воздуха входит в качестве охлаждающего воздуха 4 в каждый компонент 1 теплозащитного экрана. Частичный поток сжатого компрессором воздуха пропускают через направляющие лопатки 18 первого ряда направляющих лопаток газотурбинной установки 10. Сжатый компрессором воздух, а также нагретый в компонентах 1 теплозащитного экрана охлаждающий воздух 4 подводят к горелке 25, в которой сжигают неизображенное топливо. За счет сгорания топлива в горелке 25 возникает горячий газ 29, который через камеру сгорания 11 проходит к направляющей лопатке 18. На каждый компонент 1 теплозащитного экрана на стенке 2 горячего газа воздействует горячий газ 29. Внутреннее пространство 6 каждого компонента 1 теплозащитного экрана ограничено стенкой 2 горячего газа и примыкающей к ней внешней стенкой 14, направленной в сторону подводящего канала 12.

На фиг. 3 показана в продольном разрезе часть камеры сгорания 11 в области несущей конструкции 17. На несущей конструкции 17 расположен теплозащитный экран 20 с множеством компонентов 1 теплозащитного экрана. Каждый компонент 1 теплозащитного экрана направлен вдоль главной оси 32, которая расположена по существу перпендикулярно несущей конструкции 17. Компонент 1 теплозащитного экрана имеет проходящую в основном параллельно несущей конструкции 17, подвергаемую воздействию горячего газа 29 стенку 2 горячего газа, которая граничит с внутренним пространством 2А. Направленный вдоль главной оси 32 входной канал 3 для охлаждающей среды 4 расширяется в направлении стенки 2 горячего газа внутрь внутреннего пространства 2А. Он закрыт закрывающей стенкой 7, которая имеет отверстия 8 для прохождения охлаждающей среды 4.

Закрывающая стенка 7 направлена в основном параллельно стенке 2 горячего газа и проходит в основном по всей ее площади. Проходящая через отверстия 8 охлаждающая среда 4 ударяется о внутреннюю поверхность 16 и вызывает там ударно-отражательное охлаждение. Стенка 2 горячего газа имеет на внутренней поверхности 16 ребра 15 охлаждения, которые приводят к увеличению переноса тепла от стенки 2 горячего газа на охлаждающую среду 4. С внутренней поверхности 16 нагретая охлаждающая среда 4 выходит через проходящий в основном параллельно главной оси 32 выходной канал 5 из внутреннего пространства 2А компонента 1 теплозащитного экрана. Таким образом, используемая для охлаждения компонента 1 теплозащитного экрана охлаждающая среда 4 выходит снова полностью из компонента 1 теплозащитного экрана. К выходному каналу 5 примыкает отводящий канал 13, который может быть выполнен, например, в виде трубы и приварен к несущей конструкции 17. Отводящий канал 13 ведет предпочтительно к горелке 25 газотурбинной установки 10. Подводящий канал 12 и отводящий канал 13 направлены параллельно валу 26.

Внешняя стенка 14 выполнена по меньшей мере в отдельных областях вблизи стенки 2 горячего газа волнистой, за счет чего достигается уменьшение напряжений между нагретыми горячим газом 29 областями и охлажденными областями компонента 1 теплозащитного экрана.

Внешняя стенка 14 переходит в крепежную часть 19, которая по меньшей мере частично направлена параллельно несущей конструкции 17 и в этой параллельно направленной области крепится на несущей конструкции 17 с помощью, например, неизображенных винтов.

Подводящий канал 12 сужается при переходе во входной канал 3, соответственно, отводящий канал 13 расширяется при переходе из выходного канала 5.

На фиг. 4 показана в разрезе часть камеры сгорания 11 в области несущей конструкции 17. На несущей конструкции 17 расположен теплозащитный экран 20 с множеством компонентов 1 теплозащитного экрана, а также крепящие компоненты 1 теплозащитного экрана крепежные компоненты 21 в виде охлаждаемых винтов. Компонент 1 теплозащитного экрана направлен вдоль главной оси 32, которая в основном перпендикулярна несущей конструкции 17. Компонент 1 теплозащитного экрана имеет проходящую в основном параллельно несущей конструкции 17, подвергаемую воздействию горячего газа 29 стенку 2 горячего газа, которая по меньшей мере в отдельных областях ограничивает внутреннее пространство 2А. Направленный вдоль главной оси 32 входной канал 3 для охлаждающей среды 4 расширяется во внутреннем пространстве 2А в направлении стенки 2 горячего газа. Он закрыт закрывающей стенкой 7, которая имеет отверстия 8 для прохождения охлаждающей среды 4. Закрывающая стенка 7 направлена в основном параллельно стенке 2 горячего газа и проходит в основном по всей ее площади. Проходящая через отверстия 8 охлаждающая среда 4 ударяется о внутреннюю поверхность 16 и вызывает там ударно-отражательное охлаждение. Стенка 2 горячего газа имеет на внутренней поверхности 16 ребра 15 охлаждения или подобные передающие тепло элементы, которые приводят к увеличению переноса тепла от стенки 2 горячего газа на охлаждающую среду 4. С внутренней поверхности 16 нагретая охлаждающая среда 4 выходит через проходящий в основном параллельно главной оси 32 выходной канал 5 из внутреннего пространства 2А компонента 1 теплозащитного экрана. Таким образом, используемая для охлаждения компонента 1 теплозащитного экрана охлаждающая среда 4 выходит снова полностью из компонента 1 теплозащитного экрана. Выходной канал 15 выполнен предпочтительно концентричным. Стенка 2 горячего газа имеет толщину стенки от 3 до 5 мм, так что вследствие незначительной разницы температур в ней выполненный из компонентов 1 теплозащитный экран 20 имеет высокую устойчивость к изменению нагрузок. Компоненты 1 теплозащитного экрана вследствие простоты крепления можно монтировать и демонтировать также по отдельности. Вследствие их простой геометрической формы на них также просто можно наносить покрытие. К выходному каналу 5 примыкает отводящий канал 13, который может быть выполнен, например, в виде трубы и приварен к несущей конструкции 17. Отводящий канал 13 ведет предпочтительно к горелке 25 газотурбинной установки 10. Отводящий канал 13 может быть также литой составной частью несущей конструкции 17.

Для крепления на несущей конструкции 17 компонент 1 теплозащитного экрана имеет на проходящей в основном параллельно главной оси 32 внешней стенке 14 опорный уступ 19А. К этому опорному уступу 19А прилегает направленный вдоль главной оси 33 крепежный компонент 21 своей головкой 22. К головке 22 примыкает стержневая часть 23, которая проходит через несущую конструкцию 17 и закреплена на ней эластично с помощью тарельчатых пружин 31. Крепежный компонент 21, который выполнен предпочтительно точным литьем, имеет охлаждающий канал 24, который проходит вдоль главной оси 33 и ведет в камеру сгорания 11. В охлаждающий канал 24 подают охлаждающую среду 4 из проходящего вдоль несущей конструкции 17 подводящего канала 12. Проходящая через крепежный компонент 21 охлаждающая среда 4 охлаждает его и тем самым обеспечивает достаточную защиту в отношение горячего газа 29.

Изобретение характеризуется компонентом теплозащитного экрана, который выполнен предпочтительно в виде точной литой детали (изготовлен точным литьем) и который обеспечивает полный отвод охлаждающей среды. Внутри компонента теплозащитного экрана охлаждающая среда ударяется во всю внутреннюю поверхность подвергаемой воздействию горячего газа стенки горячего газа, за счет чего последняя эффективно охлаждается. Нагретую охлаждающую среду, в частности сжатый компрессором воздух, выводят через выходной канал из компонента теплозащитного экрана и подводят предпочтительно к горелке газотурбинной установки. В зависимости от выполнения и крепления элемента теплозащитного экрана происходит полное возвращение ответвленной от сжатого компрессором воздуха охлаждающей среды обратно в главный поток сжатого компрессором воздуха. Это приводит к значительному повышению коэффициента полезного действия газотурбинной установки.

Формула изобретения

1. Компонент теплозащитного экрана, содержащий внутреннее пространство, ограниченное подлежащей охлаждению стенкой горячего газа и проходящей от нее в направлении несущей конструкции внешней стенкой, которая переходит в крепежную часть, а также входной канал для ввода охлаждающей среды и выходной канал для отвода из внутреннего пространства охлаждающей среды, причем входной канал (3) направлен в сторону стенки (2) горячего газа и расширяется в сторону стенки (2) горячего газа, выходной канал (5) соединен с отводящим каналом (13) с обеспечением полного отвода охлаждающей среды (4), а крепежная часть (19) по меньшей мере частично параллельна несущей конструкции (17) и крепится к ней на этих параллельных участках с возможностью индивидуального монтажа и демонтажа.

2. Компонент (1) теплозащитного экрана по п. 1, во внутреннем пространстве (6) которого выходной канал (5) в значительной степени окружает входной канал (3).

3. Компонент (1) теплозащитного экрана по п. 1 или 2, в котором входной канал закрыт закрывающей стенкой (7), которая расположена вблизи стенки (2) горячего газа и имеет отверстия (8) для прохождения потока охлаждающей среды (4).

4. Компонент (1) теплозащитного экрана по одному из предшествующих пунктов, который изготовлен из металла или металлического сплава, в частности отливкой.

5. Компонент (1) теплозащитного экрана по одному из предшествующих пунктов, причем входной канал (3) выполнен с возможностью подвода воздуха (4) из компрессора (9) и выходной канал (5) выполнен с возможностью подвода воздуха в камеру сгорания (11) и/или в компрессор (9) газотурбинной установки (10).

6. Компонент (1) теплозащитного экрана по одному из предшествующих пунктов, содержащий примыкающую к стенке (2) горячего газа внешнюю стенку (14), которая выполнена по меньшей мере в некоторых областях волнистой.

7. Компонент (1) теплозащитного экрана по одному из предшествующих пунктов, который для крепления на несущей конструкции (17) имеет крепежную часть(19), окружающую входной канал (3) и выходной канал (5).

8. Компонент (1) теплозащитного экрана по одному из предшествующих пунктов, в котором стенка (2) горячего газа на ее внутренней поверхности (16) имеет ребра (15) охлаждения.

9. Компонент (1) теплозащитного экрана по одному из предшествующих пунктов, в котором входной канал (3) расширяется в виде воронки.

10. Компонент (1) теплозащитного экрана по одному из предшествующих пунктов, в котором входной канал (3) закрыт закрывающей стенкой (7), которая расположена вблизи стенки (2) горячего газа и имеет отверстия (8) для пропускания потока охлаждающей среды (4).

11. Компонент (1) теплозащитного экрана по одному из предшествующих пунктов, содержащий примыкающую к стенке (2) горячего газа внешнюю стенку (14), которая по меньшей мере в некоторых областях имеет опорный уступ (19А).

12. Компонент (1) теплозащитного экрана по одному из предшествующих пунктов, в котором стенка (2) горячего газа по меньшей мере в некоторых областях имеет толщину стенки менее 10 мм, в частности между 3 и 5 мм.

13. Теплозащитный экран, образующий футеровку компонента, через который проходит горячий газ, в частности футеровку камеры сгорания газотурбинной установки, содержащий множество компонентов теплозащитного экрана по одному из пп. 1-12, через которые проходит под давлением охлаждающая среда, причем каждый компонент теплозащитного экрана имеет внутреннее пространство, ограниченное служащей для футеровки, подлежащей охлаждению стенкой (2) горячего газа и проходящей от нее в направлении несущей конструкции внешней стенкой, которая переходит в крепежную часть, а также входной канал для ввода охлаждающей среды и выходной канал для отвода из внутреннего пространства охлаждающей среды, причем входной канал (3) направлен в сторону стенки (2) горячего газа и расширяется в сторону стенки (2) горячего газа, выходной канал (5) соединен с отводящим каналом (13) с обеспечением полного отвода охлаждающей среды (4), а крепежная часть (19) по меньшей мере частично параллельна несущей конструкции (17) и крепится к ней на этих параллельных участках с возможностью индивидуального монтажа и демонтажа, причем по меньшей мере один подводящий канал (12) проходит через направляющую лопатку (18) газотурбинной установки (10).

14. Теплозащитный экран (20) по п. 13, в котором подводящий канал (12) и/или отводящий канал (13) направлены в основном перпендикулярно валу (26) газотурбинной установки (10).

15. Теплозащитный экран (20) по любому из пп. 13 и 14, в котором каждый компонент (1) теплозащитного экрана имеет внешнюю стенку (14) с опорным уступом (19А) и для закрепления на несущей конструкции (17) предусмотрены крепежные компоненты (21), содержащие головку (22) и стержневую часть (23), причем стержневая часть (23) каждого крепежного компонента (21) закреплена на несущей конструкции (17), а головка (22) крепежного компонента (21) прилегает к опорному уступу (19А) с удерживанием компонента (1) теплозащитного экрана.

16. Теплозащитный экран (20) по п. 15, в котором каждый крепежный компонент (21) выполнен с возможностью охлаждения, в частности имеет охлаждающий канал (24), выполненный с возможностью прохождения через него потока охлаждающей среды (4).

РИСУНКИ

Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4



 

Похожие патенты:

Изобретение относится к теплозащитному экрану для защиты несущей конструкции (1) от горячей среды с состоящей из жаростойкого материала футеровкой (2а), которая составлена из покрывающих поверхность с оставлением зазоров (2b), расположенных рядом друг с другом и закрепленных с возможностью перемещения под действием тепла на несущей конструкции (1) с помощью болта (4), устойчивых к высоким температурам, в основном пластинообразных элементов (2) теплозащитного экрана

Изобретение относится к машиностроению и может быть применено, например, в нагревательных печах и камерах сгорания газотурбинных установок

Изобретение относится к камерам сгорания турбомашин, преимущественно наземных энергоустановок, работающих на природном газе с низкой токсичностью выхлопных газов

Изобретение относится к двигателестроению, в частности к камерам сгорания газотурбинных двигателей (ГТД) и газотурбинных установок (ГТУ)

Изобретение относится к теплоэнергетике и может быть использовано для воспламенения и поддержания горения в камерах сгорания различных энергетических систем газотурбинных установок (ГТУ), газотурбинных двигателей (ГТД), печах, котлах и др

Изобретение относится к сжиганию топлива, может найти применение в воздушно-реактивных двигателях, газотурбинных, топочных и теплоэнергетических установках, в установках по переработке и утилизации бытовых и промышленных отходов и обеспечивает повышение надежности запуска и устойчивую работу на газообразном и жидком забалластированном как негорючими компонентами, так и водой топливе и интенсификацию процесса сжигания топлива с низкой теплотой сгорания

Изобретение относится к турбомашиностроению, в частности к авиадвигателестроению

Изобретение относится к области авиационного двигателестроения и может быть использовано при создании камер сгорания газотурбинных двигателей

Изобретение относится к области энергетики и может быть использовано в устройствах для сжигания топлива, преимущественно в газотурбинных двигателях и в технологических топочных устройствах

Изобретение относится к области энергетического машиностроения, в частности авиационного двигателестроения

Изобретение относится к камерам сгорания газотурбинных двигателей для авиации и наземных энергоустановок
Наверх