Способ получения медно-никелевого проводника высокой электропроводимости

 

Изобретение относится к области электротехники, в частности к технологии получения проводников с высокой электропроводимостью. Задача изобретения - получение проводника с высокой электропроводимостью, превышающей значения аналогов в десятки и сотни раз. Задача достигается тем, что на медную или никелевую проволоку-основу с высоким классом обработки поверхности в вакууме наносят по всему ее периметру токопроводящий слой сплава меди и никеля с диффузией сплава в поверхностный слой металла проволоки-основы, наносят на сплав защитный слой металла, составляющего пару медь - никель с металлом проволоки-основы с диффузией металла в поверхностный слой сплава, отжигают в вакууме при 850 - 950oС в течение 30 - 180 мин и затем естественно охлаждают вместе с нагревательным устройством до комнатной температуры, при этом для изготовления проводника используют медь и никель чистотой не менее 99,99. Техническим результатом данного изобретения является создание проводника высокой электропроводимости, значительно превышающей электропроводимость аналогов, а также то, что диаметр проволоки, взятой за основу, может быть любым, что в производстве используют широко распространенные недорогие металлы, что возможно получение провода любой длины с механическими качествами провода, взятого за основу. 1 ил., 1 табл.

Изобретение относится к области электротехники и, в частности, к технологии получения проводников с высокой электропроводимостью.

Известно, что высокой электропроводимостью обладают цветные металлы - медь и алюминий, их сплавы, а также драгоценные металлы - золото, серебро. Электропроводимость других металлов, например железа, значительно ниже. (Журавлева Л.В. Электроматериаловедение. - М., 2000, с. 31-46).

Значения удельного электрического сопротивления , характеризующего электропроводность указанных материалов, представлены в таблице.

Однако абсолютные величины удельного электрического сопротивления вышеназванных материалов, обладающих высокой электропроводимостью в настоящее время являются на самом деле низкими и выступают как фактор, сдерживающий уровень развития техники.

В электротехнической, радиотехнической, электронной и других областях науки и производства требуются материалы с электропроводностью, значительно превышающей электропроводность вышеуказанных аналогов.

Задача изобретения - получение проводника с высокой электропроводимостью из широко распространенных материалов с доступной технологией изготовления, с электропроводностью, превышающей значения аналогов в десятки и сотни раз.

Задача достигается тем, что эффект высокой проводимости формируется в слое сплава, состоящего из двух металлов и представляющего собой токопроводящую тонкостенную трубку-прослойку с поверхностями, близкими к идеальной при диффузионном взаимодействии со слоями металлов, примыкающих к трубке-прослойке внутри и снаружи.

На чертеже показан поперечный разрез проводника с высокой проводимостью.

Для этого в среде вакуума на подготовленную с высоким классом обработки поверхность медной или никелевой проволоки-основы 1 наносят по всему ее периметру токопроводящий слой сплава 2 меди и никеля толщиной, обеспечивающей неразрывность токопроводящего слоя сплава 2 с диффузией сплава 2 в поверхностный слой металла проволоки - основы. Затем на токопроводящий слой сплава 2 наносят слой металла 3, составляющего пару медь - никель с металлом проволоки-основы 1, толщиной, обеспечивающей защиту от механических повреждений токопроводящего слоя сплава 2 с диффузией металла в поверхностный слой сплава. Полученный проводник отжигают в вакууме при 850 - 950oС в течении 30 - 180 мин и затем естественно охлаждают вместе с нагревательным устройством до комнатной температуры, при этом для изготовления проводника используют медь и никель чистотой не менее 99,99.

Операции по нанесению слоев проводят без изъятия изделия из вакуумной среды с целью исключения окисления токопроводящего слоя.

Длина изделия определяется возможностями вакуумного оборудования.

Проведение данных операций в представленной последовательности приводит к получению нового технического результата - проводника с высокой электропроводимостью. Электрическое сопротивление данного проводника находится в экспоненциальной зависимости от чистоты применяемых материалов - меди и никеля. В интервале значений чистоты материалов от 99,99 и выше электрическое сопротивление понижается (в сравнении с электротехническим стандартом - медью MM, ==0,017241 мкОмм) соответственно в 14 раз и более и определяется по установленной эмпирическим путем формуле: = oexp(-(R)V), где - сопротивление проводника, мкОмм; o - удельное сопротивление меди 0,017241 мкОмм; (R) - физическая константа, зависящая от квалитета поверхности, на которую наносится сплав. При чистоте обработки поверхности проволоки-основы по 14 классу (R) =1,65102; V - содержание примесей в материале в %, от 0,01 и ниже.

Проводник с подготовленной по 14 классу обработки поверхностью, при диаметре проволоки-основы в 1,0 мм, толщине нанесенного в вакууме глубиной 10-6 мм рт. ст. токопроводящего слоя сплава меди и никеля в объемной пропорции 50% на 50% 2,5 мкм и толщине нанесенного в среде вакуума глубиной 10-6 мм рт. ст. защитного слоя металла, составляющего пару медь - никель с металлом проволоки-основы, 10 мкм, с чистотой материалов 99,99, имеет электрическое сопротивление =0,00123 мкОмм, что в 14 раз ниже в сравнении с аналогом-проводником из меди.

Достоинство полученного по данной технологии проводника высокой электропроводимости состоит в том, что его электропроводимость значительно выше электропроводимости аналогов, что диаметр проволоки, взятой за основу, может быть любым, что в производстве используют широко распространенные, недорогие материалы, что возможно получение провода любой длины с механическими качествами провода, взятого за основу.

Формула изобретения

Способ получения медно-никелевого проводника высокой электропроводимости путем нанесения на проволоку-основу металлических слоев, отличающийся тем, что на медную или никелевую проволоку-основу с высоким классом обработки поверхности в вакууме наносят по всему ее периметру слой сплава меди и никеля с диффузией сплава в поверхностный слой металла проволоки-основы, наносят на сплав защитный слой металла, составляющего пару медь - никель с металлом проволоки-основы с диффузией металла в поверхностный слой сплава, отжигают в вакууме при 850 - 950oС в течение 30 - 180 мин и затем естественно охлаждают вместе с нагревательным устройством до комнатной температуры, при этом для изготовления проводника используют медь и никель чистотой не менее 99,99.

РИСУНКИ

Рисунок 1, Рисунок 2



 

Похожие патенты:

Изобретение относится к электротехнике и может быть использовано для получения токопроводящей пленки резистивного пленочного электронагревателя

Изобретение относится к электротермии, а именно к электрическим нагревателям, и может быть использовано в промышленности, строительстве, жилищно-коммунальном хозяйстве, приборостроении, медицине и т.п

Изобретение относится к электротехнике, в частности к электропроводящим смазкам, применяемым при изготовлении электрических, преимущественно сильноточных контактных соединений

Изобретение относится к электротехнике, в частности к электропроводящим смазкам, применяемым при изготовлении электрических, преимущественно сильноточных контактных соединений

Изобретение относится к области электромашиностроения, в частности к производству полупроводящих материалов - лент с различным удельным поверхностным электрическим сопротивлением, используемых для противокоронной защиты высоковольтных обмоток электрических машин

Изобретение относится к области электротермии, в частности к электронагревательным элементам резистивного нагрева на основе стеклоткани с пироуглеродным покрытием, и может найти применение для изготовления нагревательных элементов электронагревателей, используемых как в технике, так и в быту
Изобретение относится к области электронной техники и может быть использовано в производстве газоразрядных индикаторных панелей (ГИП)

Изобретение относится к производству коррозионно-стойких сплавов на основе меди для изготовления паяно-сварных конструкций энергетических установок, работоспособных в агрессивной окислительной среде в интервале температур от - 196 до 600oС

Изобретение относится к области порошковой металлургии, в частности к получению сложнолегированных порошковых спеченных антифрикционных материалов на основе меди

Изобретение относится к термически упрочняемому медному сплаву для изготовления литейных валков и литейных дисков, которые во время точного литья подвергаются действию переменных температурных напряжений

Изобретение относится к порошковой металлургии, в частности к спеченным антифрикционным материалам на основе меди

Изобретение относится к порошковой металлургии

Изобретение относится к металлургии, в частности к сплавам, используемым в приборостроении, для изготовления ювелирных и бытовых изделий, для чеканки монет

Изобретение относится к порошковой металлургии , в частности к спеченным антифрикционным материалам на основе меди для изготовления антифрикционных деталей, работающих в условиях смазки при средних и тяжелых нагрузках Сущность изобретения пред; южен спеченный антифрикционный материал на основе меди следующего состава, мас.%

Изобретение относится к области порошковой металлургии, в частности к антифрикционным дисперсно-упрочненным композиционным материалам на основе меди, предназначенным для изготовления подшипников скольжения, работающих в условиях сухого и полусухого трения, в газовых средах, в присутствии абразивных частиц, при повышенных нагрузках и температурах
Наверх