Способ определения радиальной скорости объекта

 

Изобретение относится к области гидроакустики и может быть использовано для измерения параметров движения объектов. Техническим результатом от использования изобретения является обеспечение возможности определения радиальной скорости и направления вектора скорости шумящего объекта в пассивном режиме, для чего в способ определения параметра шумящего объекта включают прием сигнала двумя разнесенными в пространстве антеннами, измерение взаимного спектра между сигналами, принятыми этими антеннами, измерение взаимного спектра между сигналами, принятыми разнесенными в пространстве антеннами в дальнем поле шумящего объекта в момент времени t1 и t2, измерение вторичного спектра от измеренных взаимных спектров в моменты времени t1 и t2, измерение периодов средних частот заполнения несущей вторичного спектра Т1 и Т2 в моменты времени t1 и t2, измерение величины изменения периода T = T1-T2 за время t = t1-t2 при этом t больше времени измерения периода взаимного спектра, в качестве параметра шумящего объекта выбирают его радиальную скорость Vp = KvT, где Кv - коэффициент пропорциональности, определяемый экспериментально в полосе обработки принятого сигнала, а направление вектора скорости и определяют по знаку T. 3 ил.

Изобретение относится к области гидроакустики и может быть использовано для измерения параметров движения объектов.

Известны методы измерения радиальной скорости цели при использовании излучения тонального сигнала и измерении смещения спектра принятого эхосигнала, величина которого пропорциональна радиальной скорости цели в соответствии с эффектом Доплера (Дж. Хортон. Основы гидролокации. Л.: Судостроение, 1961, с. 450). Однако автору неизвестны эффективные методы измерения радиальной скорости объектов при отсутствии излучения сигналов, в частности по их шумоизлучению.

Известны способы, в которых измеряют расстояние в пассивном режиме при многолучевом распространении и, казалось бы, можно измерить радиальную скорость по изменению дистанции (В. С. Бурдик. Анализ гидроакустических систем. Л. : Судостроение, 1988, с.377). Однако, как указывается там же, сложность оценки лучевой структуры делает способ пассивного измерения дистанции практически невыполнимым.

Наиболее близким аналогом по технической сущности к предлагаемому способу является способ, в соответствии с которым по изменению взаимно корреляционной функции определяется один из параметров, в данном случае - значимость выбранного источника звука. Звуковой сигнал принимается на две разнесенные в пространстве антенны, причем одну из них располагают вблизи источника звука, а другую - в исследуемой точке пространства. Сигналы с выходов антенны подаются на коррелятор. После выделения максимумы взаимно корреляционной функции суммируются, и по результатам суммирования судят о значимости выбранного источника звука. (А.К. Новиков. Корреляционные измерения в корабельной акустике. Л.: Судостроение, 1971, с.158).

Этот способ, однако, не позволяет определять скорость перемещения объектов.

Задачей изобретения является обеспечение возможности определения величины и направления радиальной скорости перемещения шумящего объекта по его шумоизлучению.

Для решения поставленной задачи в способ определения параметров шумящего объекта, содержащей прием сигнала двумя разнесенными в пространстве антеннами измерение взаимного спектра между сигналами, принятыми этими антеннами, введены дополнительные операции, а именно: измерение взаимного спектра между сигналами, принятыми разнесенными в пространстве антеннами, производят в дальнем поле шумящего объекта в момент времени t1 и t2, измеряют вторичный спектр от измеренных взаимных спектров в моменты времени t1 t2, измеряют периоды средних частот заполнения несущей вторичного спектра T1 и Т2 в моменты времени t1 и t2, измеряют величину изменения периода T = T1-T2 за время t = t2-t1 при этом t больше времени измерения периода взаимного спектра; в качестве параметра шумящего объекта выбирают его радиальную скорость, которую вычисляют по формуле Vp = KvT, где Kv - коэффициент пропорциональности, определяемый экспериментально в полосе обработки принятого сигнала, а направление вектора скорости определяют по знаку T. Техническим результатом от использования изобретения является обеспечение возможности определения радиальной скорости и направления вектора скорости (направления перемещения) шумящего объекта в пассивном режиме. Поясним возможности достижения такого результата.

В современной гидроакустике считается известным закон спадания спектральной плотности шумоизлучения цели. (Р.Дж. Урик. Основы гидроакустики. Л.: Судостроение, 1978, с.362).

Кроме того, там же указывается, что при движении объекта в точке приема происходит изменения полосы принимаемого сигнала. Это объясняется с одной стороны изменением расстояния, а с другой стороны - затуханием высокочастотных составляющих при распространении. Для сигнала в точке приема уровень шума Рш определяется выражением: где Рш.о. - приведенная шумность цели; r - расстояние до цели; f - частота сигнала; f - полоса обработки сигнала; - коэффициент затухания, = f3/2.

Эта формула справедлива при спадании спектральной плотности по закону 1/f2. Таким образом, чем выше частота и больше дистанция, тем уже спектр принимаемого сигнала. Очевидно так же, что при изменении расстояния уровень принимаемого сигнала увеличивается при приближении цели или уменьшается при удалении цели, что приводит к расширению полосы принимаемого сигнала при приближении цели или к сужению полосы спектра при удалении цели.

Дополнительно изменение ширины спектра сигнала происходит за счет влияния коэффициента затухания = f3/2. При увеличении расстояния высокочастотная составляющая сигнала ослабляется больше, чем низкочастотная, а соответственно и уменьшается спектр сигнала в точке приема. Кроме того известно, что при движении цели происходит смещение спектра сигнала за счет эффекта Доплера (Дж. Хортон. Основы гидролокации. Л.: Судостроение, 1961, с.452)
f = 0,69fcp/V/,
f - величина смещения спектра;
fср - средняя частота спектра;
/V/ - радиальная скорость цели.

Наибольшую трудность при проведении измерений составляет определение границ спектра. Эту трудность можно обойти, если измерить среднюю частоту спектра автокорреляционной функции, которая определяется как

По вычислению вторичного спектра или автокорреляционной функции сигнала используются следующие процедуры.

Пусть на каждую антенну поступают временные реализации сигналов X1(t) и Х2(t).

Спектр по каждому процессу будет определяться через быстрое преобразование Фурье


а взаимный энергетический спектр

Если считать вторичный спектр как преобразование Фурье от взаимного энергетического спектра, то

Для равномерной полосы приемного устройства

Таким образом, автокорреляционная функция или вторичный спектр содержат две составляющие, одна из которых определяется полосой сигнала шумоизлучения
,
а другая - средней частотой сигнала шумоизлучения

Составляющая, определяемая полосой, является огибающей функции B(), а составляющая, определяемая средней частотой, является несущей частотой функции B(); та и другая определяются в процессе измерений.

При движении цели ее полоса изменяется в зависимости от пройденного расстояния. При увеличении расстояния верхняя частота будет снижаться. В момент времени t1 имеем

В момент времени t2 имеем

Тогда для момента t1 период будет равен

а для момента

Скорость изменения периода за время T будет пропорциональна радиальной скорости шумящего объекта, определяемой изменением средней частоты спектра.

Коэффициент пропорциональности определяется радиальной скоростью объекта и частотным диапазоном системы измерения.

Если разность T>0, это означает, что средняя частота уменьшается, и полоса становится уже, а значит объект удаляется;
если T<0, то этот объект приближается. Сама величина T определяет радиальную скорость объекта.

Коэффициент Kv определяется параметрами тракта и полосой обработки.


где Vкалиб - фиксированная скорость движения объекта;
T0 - величина периода сигнала несущей при отсутствии движения;
Tкалиб - величина периода сигнала несущей при движении объекта с радиальной скоростью Vp=Vкалиб.

Таким образом достигается эффект измерения направления перемещения шумящего объекта и радиальной скорости перемещения.

Сущность изобретения поясняется на фиг.1, 2 и 3, где на фиг.1 изображена блок-схема устройства, реализующего предлагаемый способ;
На фиг. 2 изображена средняя частота спектра сигнала, принимаемая двумя антеннами в моменты времени t1 и t2. Для момента времени t1 средняя частота сигнала fср1 и длина периода T1.

Для момента времени t2 средняя частота fcp2 и длина периода Т2. При приближении цели средняя частота увеличивается, а период уменьшается. Величина разности T определяет радиальную скорость цели. На фиг.3 показаны периоды средней частоты автокорреляционной функции для моментов времени t1 и t2.

Устройство фиг.1 содержит две приемные антенны 1 и 2, соединенные с первым блоком БПФ измерения взаимного спектра, выход которого соединен со входом второго блока БПФ-4 и далее с блоками измерения периода несущей вторичного спектра 5 и 6 для моментов времени t1 и t2. В блоке 7 измеряется разность между периодами несущей частоты. Измеренное значение разности со знаком разности подается на блок принятия решения, где определяется направление перемещения шумящего объекта и его радиальная скорость.

Предложенный способ имеет следующую последовательность операций: в момент времени t1 сигналы, принимаемые с двух антенн 1 и 2, подаются на блок 3 измерения взаимного спектра и далее на второй блок 4 измерения вторичного спектра. При этом в автокорреляционной функции формируется несущая частота фиг.2, которая определяется когерентной частью полосы сигнала шумоизлучения. С выхода блока 4 несущая частота, определяемая составляющей и огибающей подаются в блок измерения периода несущей частоты по значениям точки перехода через нулевую отметку фиг.2. Затем ту же процедуру производят в момент времени t2.

На фиг.3 представлены АКФ для двух моментов времени t1 и t2.

Значение коэффициента Kv определяют при калибровке устройства до начала работы. Измеряют значение частоты эталонного объекта при скорости V1=0 и на фиксированной скорости движения Vкалиб.

Коэффициент Kv определяется как
,
где Vкалиб - фиксированная скорость движения;
Т0 - период при V=0;
Ткалиб - период при V=Vкалиб.

Предположим, что во время калибровки средняя частота изменилась с 10 до 15 кГц при изменении скорости на Vкалиб= 30 узлов, тогда Кv=750 уз./мс.

При изменении частоты, принятой от шумящего объекта в процессе работы, с 10 до 10,5 кГц получим T=0,0047 мс и Vp=750 уз./мс0,0047 мс =3,5 узла, что соответствует приближению объекта. Если в процессе работы частота изменилась с 11 до 10,5 кГц, что соответствует изменению периода с 0,0909 до 0,0952 и T= -0,0042, что соответствует удалению объекта. Таким образом, задача определения скорости и направления перемещения объекта решена.


Формула изобретения

Способ определения параметра шумящего объекта, включающего прием сигнала двумя разнесенными в пространстве антеннами, измерение взаимного спектра между сигналами, принятыми этими антеннами, отличающийся тем, что измерение взаимного спектра между сигналами, принятыми разнесенными в пространстве антеннами, производят в дальнем поле шумящего объекта в момент времени t1 и t2, измеряют вторичный спектр от измеренных взаимных спектров в моменты времени t1 и t2 измеряют периоды средних частот заполнения несущей вторичного спектра Т1 и Т2 в моменты времени t1 и t2, измеряют величину изменения периода T = T1-T2 за время t = t1-t2, при этом t больше времени измерения периода взаимного спектра, а в качестве параметра шумящего объекта выбирают его радиальную скорость, которую вычисляют по формуле Vp = KvT, где Кv - коэффициент пропорциональности, определяемый экспериментально в полосе обработки принятого сигнала, причем направление вектора скорости определяют по знаку T.

РИСУНКИ

Рисунок 1, Рисунок 2, Рисунок 3



 

Похожие патенты:

Изобретение относится к подводной технике и может быть использовано при создании доплеровских измерителей скорости движения объектов относительно дна или среды

Изобретение относится к вычислительной технике и может быть использовано в системах обработки локационных сигналов

Изобретение относится к области гидроакустики, в частности к способам измерения радиальной скорости движения объекта. Способ заключается в следующем. С помощью антенны принимают сигнал шумоизлучения объекта, осуществляют дискретизацию принятого сигнала и измерение спектра сигнала по набранной временной реализации. Далее определяют взаимный спектр между двумя последовательными временными наборами и на основе обратного преобразования Фурье получают автокорреляционную функцию от измеренного взаимного спектра. Затем определяют полупериод несущей частоты автокорреляционной функции и рассчитывают радиальную скорость по формуле: Vr =Κν (ΠΝ - П1), где Kv - коэффициент пропорциональности, определяемый экспериментально, ΠΝ и П1 - полупериоды несущих частот автокорреляционной функции для взаимных спектров для первого набора временной реализации и N-го набора временной реализации соответственно. Техническим результатом изобретения является повышение точности измерения радиальной скорости объекта. 2 ил.

Изобретение относится к области гидроакустических навигационных систем, а более конкретно к способам приведения автономных необитаемых подводных аппаратов при помощи гидроакустических средств. Достигаемый технический результат - сокращение до минимума набора регистрируемых параметров, необходимых для приведения подводного аппарата, при отсутствии синхронизации между маяком и подводным аппаратом. Технический результат достигается тем, что для приведения автономного необитаемого подводного аппарата используется один опорный гидроакустический маяк, излучающий сигналы через равные промежутки времени, для аппарата задается постоянная скорость движения , аппарат принимает сигналы от маяка, с помощью системы экстремального регулирования (СЭР) производится поиск оптимального угла пеленга на маяк; производят настройку маяка на периодическое излучение двух типов фазоманипулированных шумоподобных сигналов S1 и S2 с мощностью P(S1)>P(S2) и периодом T(S1)≥T(S2); по ходу движения аппарата регистрируют сигналы с помощью многоканального приемника, каждый из каналов которого настроен на определенное изменение длительности и частоты сигналов S1 и S2, вызванное влиянием эффекта Допплера; путем анализа корреляционной функции в каждом из каналов с помощью селектора максимума идентифицируют сигнал и производят оценку скорости взаимного сближения аппарата и маяка ; полученную оценку подают на вход СЭР и производят управление движительно-рулевым комплексом аппарата для поиска и поддержания курса, соответствующего максимальному значению ; при регистрации сигнала S2 уменьшают скорость движения аппарата ; при получении отрицательной оценки на выходе селектора максимума (прохождении аппаратом точки расположения маяка) производят остановку подводного аппарата. 4 ил.

Изобретение относится к области гидроакустики и может быть использовано при калибровке абсолютных и относительных лагов

Изобретение относится к гидроакустике и может быть использовано для настройки в натурных условиях приемных каналов гидроакустического доплеровского лага

Изобретение относится к измерительной технике и может быть использовано для определения скорости течения и направления жидкости в электропроводящих средах, преимущественно в морской воде

Изобретение относится к области гидроакустических лагов, предназначенных для измерения скорости морского объекта

Изобретение относится к области гидроакустики и может быть использовано для измерения глубины погружения приводняющегося объекта с использованием гидролокатора ближнего действия, установленного на движущемся носителе, относительно горизонта движения носителя

Использование: изобретение относится к области гидроакустики и может быть использовано при разработки гидроакустической аппаратуры, предназначенной для освещения подводной обстановки. Сущность: в способе определения глубины погружения объекта гидролокатором излучают зондирующий сигнал, осуществляют прием эхо-сигнала вертикальной линейной антенной, имеющей узкие характеристики направленности в вертикальной плоскости и широкие характеристиками направленности в горизонтальной плоскости, прием эхо-сигнала горизонтальной линейной антенной, имеющей узкие характеристики направленности в горизонтальной плоскости и широкие характеристики направленности в вертикальной плоскости, прием эхо-сигнала одновременно обеими антеннами, измерение дистанции и направления прихода эхо-сигнала, при совпадении измеренных дистанций определяется характеристика направленности в вертикальной плоскости, определяется угол места по отклонению положения этой характеристики от направления верхней горизонтальной характеристики и определяют глубину погружения относительно глубины погружения излучателя по формуле Ноб=Dверт Sin(α), где Dверт - измеренная дистанция до цели, α - угол между характеристикой в вертикальной плоскости, в котором обнаружен эхо-сигнал от цели и направлением движения носителя, измеряют глубину погружения гидролокатора Нгл, а глубина погружения объекта определяется Н=Ноб+Нгл. Технический результат: измерение глубины погружения объекта при любой глубине места подводным гидролокатором, в том числе при малой глубине места. 1 ил.

Изобретение относится к области гидроакустики и может быть использовано для построения систем классификации обнаруженных объектов гидролокатором освещения ближней обстановки. Использование способа позволит повысить вероятность правильной классификации. Способ содержит излучение зондирующего сигнала, прием эхо-сигналов статическим веером характеристик направленности, цифровую обработку принятого сигнала, определение уровня помехи, вычисление порога, определение превышения выбранного порога обнаружения последовательно по всем пространственным каналам статического веера характеристик направленности, измерение и запоминание амплитуды и номера отсчетов, превысивших порог обнаружения, измерение дистанции, выбор соседних пространственных каналов, в которых произошло превышение порога, определение временной протяженности эхо-сигнала в этих каналах ΔTi, где i - номер канала, по каждому каналу i определяют временное положение момента начала огибающей эхо-сигнала Т, определяют разность времен между моментами начала измеренных эхо-сигналов в соседних пространственных каналах Ti+1-Ti, по известной ширине характеристики направленности одного пространственного канала α и измеренной дистанции Дизм определяют инструментальную тангенциальную протяженность эхо-сигнала по формуле К=Дизм sinα, определяют курсовой угол положения объекта по формуле β=arctg С(Ti+1-Ti)/K, где С - скорость звука, определяют радиальную протяженность объекта последовательным суммирование оценок радиальной протяженности в тех последовательных пространственных каналах, в которых произошло превышение порога ΣΔTi, определяют полную протяженность объекта по формуле Lполн.=Lрад/sinβ, где Lрад=CΣΔTi, которая сравнивается с порогом для проведении классификации. 1 ил.

Использование: изобретение относится к области гидроакустики и может быть использовано для измерения высоты объекта над уровнем дна. Сущность: гидроакустический способ определения пространственных характеристик объекта, содержащий излучение зондирующего сигнала в момент времени t, приема эхосигнала tэхо, определяется дистанция D до объекта по величине временной задержки и известной скорости распространения звука С, после излучения измеряют уровень объемной реверберации U0, определяют порог обнаружения Uпор., измеряют tнач время начала эхосигнала, при котором впервые амплитуда эхосигнала Аоб превысила порог Аоб>Uпор и определяют дистанцию D0=0,5 С tнач, измеряют момент времени последней амплитуды эхосигнала tпос, при котором минимальная амплитуда эхосигнала от объекта Аоб>Uпор, определяют момент времени начала тени tтени, при котором выполняется условие U0≥Атен и tтени>tпос, определяют момент времени окончания тени tкон.т, при котором Uпор>Аоб≥U0, определяют дистанцию до момента окончания тени Dтени=0,5 С tкон.т, определяют глубину от гидролокатора до дна Hдна, а высоту объекта определяют по формуле . Технический результат: определение высоты обнаружения объекта над уровнем дна по одной посылке. 2 ил.

Использование: изобретение относится к области гидроакустики и может быть использовано для измерения параметров положения объекта, обнаруженного на дне с использованием гидролокатора ближнего действия. Способ содержит излучение зондирующего сигнала в момент времени t, после излучения измеряется уровень объемной реверберации U0, определяется порог обнаружения Uпор эхосигнала, определяется дистанция до объекта D по величине временной задержки и известной скорости распространения звука С, по превышению эхосигналом от дна порога обнаружения определяют время распространения сигнала до дна tдна и дистанцию от гидролокатора до дна Ндна=0,5С tдна, измеряют tнач время начала прихода эхосигнала, при котором произошло первое превышение порога, определяют дистанцию D1=0,5С tнач, измеряют момент окончания эхосигнала tпос, когда произошло последнее превышение порога, определяют дистанцию Dпос=0,5С tпос, определяют момент времени начала тени tтениН при Uпор≥Aэхс.тен больше амплитуды эхосигнала Aэхс.тен, определяют момент времени окончания тени tтениК, при котором амплитуда эхосигнала Aэхс.К>Uпор, и определяют дистанцию до момента окончания тени Dтени=0,5C tтениК., определяют горизонтальную дистанцию до начала объекта на дне D г о р 1. 2 = D 1 2 − H д н а . 2 , определяют горизонтальную дистанцию до конца тени D г о р . т е н и 2 = D т е н и 2 − H д н а . 2 , определяют высоту последней отражающей точки объекта Ноб=δНдна/Dтени, определяют длину L стороны объекта на дне, обращенной к гидролокатору, по формуле: L = d 2 + δ 2 − 2 d δ ( 1 − ( H д н а D т е н и ) 2 , где d=Dгор.тени-Dгор.1, δ=Dтени-Dпос, а угол наклона Q° объекта относительно дна определяют как Q°=arcsin δ Ндна/DтениL. Технический результат: определение протяженности объекта на дне и угла его наклона по отношению к дну по одной посылке. 2 ил.
Наверх