Метаемое тело для электромагнитного ускорителя

 

Изобретение относится к технике гиперскоростного метания снарядов путем электромагнитного воздействия на ускоряемое тело и может быть использовано в системах противоракетной и противовоздушной обороны, а также в составе технологического и лабораторного оборудования для получения сверхвысоких нагрузок и скоростей. В качестве диэлектрика для изготовления метаемого тела для электромагнитного ускорителя предлагается стекловолокно, выполненное с хаотичным расположением волокон и спрессованное с варьируемой плотностью прессовки, причем стекловолокно может содержать добавки и быть армированным. Использование изобретения позволяет обеспечить необходимую прочность метаемого тела в процессе движения по направляющим электромагнитной пушки до момента вылета из канала ствола. 2 з.п.ф-лы.

Изобретение относится к технике гиперскоростного метания снарядов путем электромагнитного воздействия на ускоряемое тело и может быть использовано в системах противоракетной и противовоздушной обороны, а также в составе технологического и лабораторного оборудования для получения сверхвысоких нагрузок и скоростей.

Известно метаемое тело для электродинамической метательной установки, в котором метаемое тело имеет отверстие, ось которого лежит в плоскости токопроводящих рельс и перпендикулярна им, хвостовая часть метаемого тела выполнена в виде пластины, соединенной с головкой частью посредством опорных элементов с образованием отверстия между частями метаемого тела и опорными элементами, причем толщина пластины h определена соотношением: где в - предел прочности материала метаемого тела; S - площадь сечения опорного элемента; P - разность давлений между передней и задней кромками отверстия; d - диаметр столба разряда; l - длина хвостовой части; b - ширина хвостовой части; а - ускорение; - плотность материала,
причем в межрельсовых изоляторах выполнены пазы, в которых установлена хвостовая часть метаемого тела с опорными элементами (патент РФ 2009439, МПК F 41 В 6/00 - аналог).

Для разгона описанного в аналоге метаемого тела в стволах электромагнитных ускорителей широко используется токопроводящий плазменный поршень, в объеме которого возникает пондеромоторная сила как результат взаимодействия магнитного поля электрического тока, протекающего по рельсам ствола ускорителя, с электрическим током в плазме. Действие этой силы передается на метаемое тело. При этом работоспособность электромагнитного ускорителя определяется способностью метаемого тела выдерживать газовое давление со стороны плазменного поршня. Метаемое тело испытывает тепловые и инерционные нагрузки. Расчеты и экспериментальные данные показывают, что динамическое приложение нагрузок вызывает перегрузки порядка 100000g, вызванные высокими скоростями (6-20 км/с) при выходе из ствола ускорителя, достигаемыми за короткое время порядка 10-6 с. При таких перегрузках метаемое тело в аналоге разрушается при выходе из ствола метательной установки.

Описанные в литературе метаемые тела состоят, как правило, из головной части (пуля), изготовленной на основе титановых сплавов, и диэлектрика, расположенного вокруг "пули" и обеспечивающего ее изоляцию и стабилизацию в полете. Прочностные характеристики этих материалов обеспечивают работу метаемого тела только на начальном этапе движения по стволу ускорителя (до 1/3 длины).

Аналогом является снаряд для сверхскоростного метания в электромагнитном ускорителе, выполненный из диэлектрических материалов графита и тефлона (Моделирование сопротивления и эрозии при электромагнитном метании тел. Ракетная техника и космонавтика, том 19, 11, ноябрь, 1981, с. 156-163 - аналог).

Известно также метаемое тело (снаряд) для электромагнитной пушки, представляющее собой куб, выполненный из диэлектрика (Электромагнитные ускорители в военном деле. Зарубежное военное обозрение, 5, 1986, с. 19-22 - прототип).

Основным недостатком описанных метаемых тел является их неспособность выдерживать большие тепловые, электромагнитные и инерционные перегрузки при движении в стволе электромагнитного ускорителя и их разрушение при выстреле. Следует отметить, что при выстреле под воздействием плазменной дуги и электромагнитного поля разрушается не только снаряд (метаемое тело), но и сам рельсовый электромагнитный ускоритель.

Задача изобретения - обеспечение необходимой прочности метаемого тела в процессе движения по направляющим электромагнитной пушки до момента вылета из канала ствола.

Технический результат изобретения достигается за счет выбора материала диэлектрика, обеспечивающего необходимую прочность при действующих тепловых, электромагнитных и инерционных нагрузках.

Поставленная задача достигается тем, что в метаемом теле для электромагнитного ускорителя, состоящем из диэлектрика, диэлектриком является стекловолокно, выполненное с хаотичным расположением волокон и спрессованное с варьируемой плотностью прессовки.

Поставленная задача достигается также тем, что стекловолокно содержит добавки и армировано.

Стекловолокно для метаемого тела с хаотичным расположением волокон упаковывается прессованием с варьируемой плотностью прессовки, что обеспечит необходимое демпфирование при динамическом ударном импульсе, изоляцию и изотропность распределения нагрузок по всему объему.

Как правило, для объектов военной техники совсем не обязательно иметь в качестве снаряда тело с высокой прочностью. При высоких скоростях для выведения из строя объектов военной космической техники достаточно воздействовать на них динамическим ударным импульсом объекта с произвольной массой. "Зарубежные военные специалисты полагают, что с помощью электромагнитных пушек можно "выстреливать" снаряды со скоростями порядка 100 км/с и поражать баллистические ракеты на любом участке траектории. По их мнению, например, электромагнитная пушка способна создавать на дальности 2000 км при скорости полета инертных боеприпасов 10-20 км/с более высокую плотность энергии на единицу площади по сравнению с другими перспективными видами оружия, в том числе мощными лазерами и ядерными боеприпасами" (Электромагнитные ускорители в военном деле. Зарубежное военное обозрение, 5, 1986, с. 20).

Преимущества выполнения метаемого тела из стекловолокна.

Во-первых, неупорядоченная структура создает свободное пространство между молекулами, что обеспечивает внутреннее демпфирование.

Во-вторых, анализ массово-частотных характеристик метаемого объекта (тела, снаряда, пули) предполагает в качестве оптимального метаемый объект с высокой степенью пластичности материала метаемого объекта и одновременно с высокой плотностью его. При этом метаемое тело должно выдерживать очень высокие тепловые нагрузки и быть изолятором.

Прочностные характеристики основной нити стекловолокна (модуль упругости Е, толщина и др.), количество волокон в пучке, степень запрессовки и другие подбираются исходя из оптимальных характеристик и назначения электромагнитного ускорителя (электрическая мощность, время работы, длина направляющих, скорострельность и другие).

При высоких температурах стекловолокно не испаряется, остается пластичным, выдерживает большие давления и перегрузки.

Выполнение стекловолокна с добавками или армированием позволяет регулировать реакцию метаемого тела на тепловые воздействия (испарение, пластичность и др.) и перераспределять внутренние усилия согласно расчетной схемы.

Таким образом, по сравнению с прототипом предлагаемое метаемое тело для электромагнитного ускорителя, выполненное из стекловолокна, удовлетворяет поставленной задаче по обеспечению прочности в процессе движения по направляющим электромагнитной пушки до момента вылета из нее.


Формула изобретения

1. Метаемое тело для электромагнитного ускорителя, состоящее из диэлектрика, отличающееся тем, что диэлектриком является стекловолокно, выполненное с хаотичным расположением волокон и спрессованное с варьируемой плотностью прессовки.

2. Метаемое тело по п.1, отличающееся тем, что стекловолокно содержит добавки.

3. Метаемое тело по пп.1 и 2, отличающееся тем, что стекловолокно армировано.



 

Похожие патенты:

Изобретение относится к боеприпасам для гладкоствольных дробовых ружей

Изобретение относится к боеприпасам стрелкового оружия и может быть использовано в конструкции универсальной пули для оружия, предназначенного для стрельбы на воздухе, под водой, из воздуха в воду и из воды в воздух
Изобретение относится к огнестрельному оружию

Изобретение относится к области изготовления оболочек из органопластикового материала, которые могут быть использованы в качестве корпусов ракет, различных емкостей
Изобретение относится к легированным сталям, содержащим хром с бором, которые предназначены для изготовления штамповкой полосы звеньев патронной ленты, в частности, под набивку малокалиберных артиллерийских патронов для автоматической стрельбы

Изобретение относится к боеприпасам для защиты вертолетов и транспортных самолетов от ракет класса «воздух-воздух» и «земля-воздух» с комбинированным головками самонаведения
Изобретение относится к огнестрельному оружию, а именно к композиционному материалу, который может быть использован при производстве метательных снарядов и пуль
Изобретение относится к области травматического огнестрельного оружия самообороны, а именно к композиционному материалу для изготовления метательных снарядов (пуль), предназначенных для несмертельного механического поражения. Композиционный материал для травматических метательных снарядов огнестрельного оружия получен вулканизацией резиновой смеси на основе связующего из каучука или смеси каучуков, вулканизатора, порошкообразного металлического утяжелителя, неорганического наполнителя и пластификатора. В качестве неорганического наполнителя материал содержит смесь из двух веществ с различным размером частиц, а именно: наполнитель группы А с размером частиц 0,01-0,08 мкм и наполнитель группы Б с размером частиц 0,1-25 мкм, при этом в качестве наполнителя группы А использован технический углерод или коллоидная кремнекислота, а в качестве наполнителя группы Б выбрано вещество или смесь веществ из группы окислов, сульфидов или солей тяжелых металлов плотностью 4-10 г/см3, при следующем соотношении компонентов в исходной резиновой смеси, мас.ч.: каучук или смесь каучуков 100,0; наполнитель группы А 15,0-70,0; наполнитель группы Б 50,0-200,0; порошкообразный металлический утяжелитель 17,0-350,0; пластификатор 2,0-25,0; вулканизатор 2,0-13,0. Технический результат - улучшение баллистических свойств резиновых пуль и улучшение технологии процесса изготовления утяжеленных резиновых пуль. 1 з.п. ф-лы, 1 табл., 10 пр.

Изобретение относится к области травматического огнестрельного оружия самообороны, в частности к производству эластичного композиционного материала, используемого для изготовления метательных снарядов (пуль), предназначенных для несмертельного механического поражения. Композиционный материал для изготовления метательных снарядов содержит органическую полимерную матрицу, выполненную из каучука, вулканизирующие ингредиенты и диспергированный порошкообразный металлический утяжелитель. Материал включает следующие компоненты, мас.ч. (на 100 мас.ч. каучука): бутадиен-нитрильный каучук 40,0-60,0; хлоропреновый каучук 60,0-40,0; вулканизующие агенты - серу 0,6-0,8; магнезию жженую 2,4-2,6; оксид цинка 4,0-6,0; сульфенамид Ц 1,6-1,8; технологические добавки - парафин 2,8-3,2; стеариновую кислоту 0,8-1,2; противостарители - нафтам-2 0,8-1,2; диафен ФП 1,4-1,6; пластификатор - дибутилфталат 16,0-18,0; наполнители - технический углерод П 803 75,0-85,0, порошкообразный железный утяжелитель - ПЖВ2.160.30 или ПЖР2.200.30 490,0-492,0. Материал обеспечивает улучшение баллистических свойств утяжеленных резиновых пуль и их упругопрочностных характеристик при эксплуатации. 2 табл.

Изобретение относится к ракетной и авиационной технике, а более конкретно - к ударным беспилотным системам для поражения наземных и надводных целей. В отсеке боевого оснащения (БО) летательного аппарата (ЛА), включающем силовой набор, обечайку и вкладную боевую часть (БЧ), обечайка и силовой набор отсека БО выполнены из конструкционного материала, воспламеняющегося при подрыве БЧ и поддерживающего горение в воздухе. В силовом наборе могут быть выполнены полости, внутри которых размещаются ампулы с жидкой углеводородной либо твердой термобарической смесью для организации дефлаграционного горения. В ряде случаев, например при необходимости теплоизоляции внутренних объемов отсека БО, на внутренней поверхности обечайки могут устанавливаться теплоизолирующие маты, которые закрепляются на обечайке точечно, с шагом не менее 10 мм. На внутреннюю поверхность обечайки может быть нанесен горючий состав, с температурой его воспламенения не менее температуры полного торможения воздушного потока при максимальной скорости полета ЛА, но не более температуры воспламенения конструкционного материала обечайки отсека БО. Горючий состав может быть выполнен теплоизолирующим. Между БЧ и обечайкой могут быть размещены сбрасываемые в полете ложные цели, при этом обечайка выполняется разрезной. Применение предложенного технического решения в беспилотных ударных ЛА позволит увеличить боевое могущество БЧ и зажигательное действие боевого оснащения за счет синергетического эффекта взаимодействия продуктов подрыва БЧ и элементов отсека БО, при этом в ряде случаев может быть реализована дополнительная возможность размещения в отсеке БО сбрасываемых в полете ложных целей. 5 з.п. ф-лы, 4 ил.
Наверх