Способ получения мембранных трубчатых фильтрующих элементов

 

Изобретение относится к способу получения мембранных трубчатых фильтрующих элементов и может быть использовано при ультра- и микрофильтрации для концентрирования, разделения и очистки компонентов. Способ получения заключается в формировании на поверхности открытопористой трубки жидкой пленки из гомогенного раствора, содержащего 8-25 мас.% фторполимера, 20-40 мас.% нерастворителя и до 100 мас.% растворителя, и отверждением фторполимера. В качестве нерастворителя используют 25-33 мас.% низшего алифатического спирта или его смеси (по массе) 1,0:0,4-1,5 с уксусной кислотой, или 1:0,016-0,180 с поливинилпирролидоном, или 1:0,5-1,5:0,015-0,025 с уксусной кислотой и поливинилпирролидоном одновременно. Изобретение обеспечивает увеличение вязкости, стабильности и других свойств растворов фторополимеров, необходимых при изготовлении трубчатых фильтрующих элементов. Расширяется ассортимент и сырьевая база для их производства. 1 табл.

Изобретение относится к способу получения мембранных трубчатых фильтрующих элементов для ультра- и микрофильтрации жидких смесей с целью концентрирования, разделения и очистки их компонентов.

Известен способ получения мембранных фильтрующих элементов (пaт. CША 4810384 кл. 210/636, 1969) формованием на подложке жидкой пленки из гомогенного 12,6-16 мас. % раствора поливинилиденфторида, диметилформамида и нерастворителя (1,5-3,5 мас. % хлористого лития и воды) и отвержением поливинилиденфторида с образованием селективно проницаемой пленки-мембраны. Подложка, на которую поливают раствор поливинилиденфторида, должна быть устойчива к действию диметилформамида. Мембраны, полученные по указанному способу, устойчивы при эксплуатации в кислых и цепочных средах. Однако недостатком их является высокая гидрофобность. Гидрофилизацию таких мембран осуществляют в поле кислородной плазмы, процесс сложный, требуется специальное дорогостоящее оборудование и высококвалифицированное обслуживание.

Известен способ получения мембранных фильтрующих элементов (а.с. СССР 883100, кл. С 08 L 27/18, 1981) формированием на инертной подложке жидкой пленки из гомогенного: раствора (5,8-8,1 мас. %) сополимера тетрафторэтилена с винилиденфторидом, диметилацетамида и нерастворителя (9,8-10,7 мас. % глицерина и 0,7-6,7 мас. % муравьиной кислоты) и отверждением сополимера с образованием мембраны. Однако используемые растворы сополимера имеют низкую динамическую вязкость. Из них трудно получить однородную по толщине трубчатую мембрану из-за самостекания раствора. К тому же такие растворы малостабильны и легко превращаются в студень. По указанному способу получают только крупнопористые микрофильтрационные мембраны.

Наиболее близким к заявленному техническому решению является способ получения мембранного фильтрующего элемента(пат; РФ 119817 кл. В 01 D 71/32, 27/06, 1998) растворением сополимера тетрафторэтилена с винилиденфторидом при температуре 30-50оС в легколетучем растворителе (ацетоне), смешением полученного раствора со смесью изопропилового спирта и воды при температуре 18-50оС с получением рабочего раствора, пропиткой им в нагретом состоянии со скоростью 1-10 м/мин плоской пористой подложки с размером пор от 5 до 500 мкм из нетканого материала на основе полипропиленовых или полиэтилентерефталатных волокон, кратковременной (0,5-1,0 мин) выдержкой для испарения части растворителя и частичного отверждения рабочего раствора и последующй ступенчатой сушкой при температуре 45-53оС, 55-65оС, и 90-100оС. Содержание в рабочей растворе (мас. %): сополимера 7,5-11,5, ацетона 69,1-65,3, воды 8,5-6,5, изопропилового спирта 16,4-15,0. Пористая подложка должна быть инертна по отношению к растворителю сополимера.

Однако по известному способу получают только микрофильтры, с размером пор 0,10-0,65 мкм. Используемые рабочие растворы фторполимера имеют очень низкую динамическую вязкость, просачиваются через подложку, из-за быстрого самостекания непригодны для изготовления трубчатых фильтрующих элементов, присутствие воды в рабочих растворах фторполимера делает их малостабильными, при снижении температуры и незначительном испарении легколетучего растворителя они легко самопроизвольно превращаются в студень и становятся непригодными для изготовления мембраны. Процесс формирования структуры мембраны многоступенчатый, сложный, энергоемкий.

Технической задачей, на решение которой направлено настоящее изобретение, является разработка более простого способа получения широкого ассортимента трубчатых фильтрующих элементов с химстойкой фторполимерной селективно проницаемой мембраной путем использования стабильных более вязких рабочих растворов фторполимеров, пригодных для формирования мембран на длинномерных открытопористых трубках, в том числе получаемых на основа полимеров, неустойчивых к растворителям, которые обычно используют для изготовления рабочих растворов фторполимеров.

Указанная задача решается за счет того, что в известном способе получения мембранных фильтрующих элементов с фторполимерной мембраной формированием на открытопористой подложке жидкой пленки из гомогенного раствора фторполимера, растворителя и нерастворителя и утверждением фторполимера с образованием селективно проницаемой мембраны, согласно изобретению на поверхность открытопористой трубки наносят раствор фторполимера, в котором в качестве нерастворителя используют 25-33 мас. % изопропилового спирта, или его смеси (по массе) 1:0,4-1,5 с уксусной кислотой, или 1:0,016-0,180 с поливинилпирролидоном, или 1:0,5-1,5:0,020-0,035 с уксусной кислотой и поливинилпирролидоном одновременно при следующем соотношении компонентов раствора (мас.%): фторполимер 8-25, нерастворитель 20-40, растворитель- остальное.

Решение задачи было найдено в использовании большой (20-40 мас. %) концентрации мягко действующего нерастворителя, оказалось, что такими являются изопропиловый спирт, или его смеси с уксусной кислотой, или с поливинилпирролидоном, или с уксусной кислотой и поливинилпиролидоном одновременно. При этом экспериментально было установление, что приемлимыми являются смеси (по массе) изопропилового спирта с уксусной кислотой 1:0,4-1,5, изопропилового спирта с поливинилпирролидоном 1:0,016-0,180, изопропилового спирта с уксусной кислотой и поливинилпиролидоном одновременно 1:0,5-1,5:0,020-0,035. Обнаружено, что добавки к изопропиловому спирту уксусной кислоты, или поливинилпирролидона или их смеси одновременно позволяют существенно изменить эксплуатационные характеристики получаемых трубчатых фильтрующих элементов с фторполимерной мембраной, например водопроницаемость.

В качестве мембранообразующих фторполимеров, согласно предлагаемому изобретению используют, например, растворимые сополимеры винилиденфторида с тетрафторэтиленом или поливинилиденфторид. В качестве их растворителя: ацетон, диметилформамид, диметилацетамид, N-метилпирролидон, тетрагидрофуран и др. или их смеси.

В качестве открытопористой трубки может быть использована открытопористая трубка из любого инертного материала (керамика, графит, нержавеющая сталь, стекло-, угле- или органопластик, полипропилен), а также из полимеров, например АБС-пластика, набухающих или растворяющихся в обычных растворителях для мембранообразующего фторполимера.

Используемые в предлагаемом способе открытопористый трубки имеет длину до 3 м, пористость порядка 30%, средний размер пор 5-20 мкм и могут быть пропитаны водой, спиртом и др. жидкостями, растворимыми в воде.

Приготовление рабочего раствора фторполимера в растворителе проводят при перемешивании и подогреве до 40-80 оС до полного растворения, затем после снижения температуры до 30-50 оС к полученному раствору постепенно добавляют нерастворитель.

Фильтрацию готового рабочего раствора фторполимера осуществляют через материал, задерживающий инородные частицы и гели.

Обезвоздушенный рабочий раствор хранят в герметично закрытой емкости обычно при температуре помещения.

Полив рабочего раствора на поверхность открытопористых трубок осуществляют при скоростях от 1 см/с до 8 см/с, при этом более низковязкие рабочие растворы наносят при большой скорости.

Отверждение фторполимера в отлитом слое формовочного раствора осуществляют по сухо-мокрому или мокрому способу. Выдержка на воздухе жидкой пленки рабочего раствора, отлитой на поверхности открытопористой трубки составляет от нескольких секунд до 5 мин.

В качестве осадительной ванны для отверждения фторполимерной мембраны используют воду или ее смеси с растворителем и нерастворителем (до 10 мас. % последних), накапливающихся в воде в результате осаждения фторполимера из рабочего раствора.

Сопоставительный анализ показывает, что предлагаемое изобретение отличается новизной технического решения.

Предлагаемый способ получении мембранных трубчатых фильтрующих элементов характеризуется использованием растворов фторполимеров, содержащих 20-40 мас. % нерастворителя, в качестве которого используется 25-33 мас. % изопропиловый спирт, или его смеси (по массе) с уксусной кислотой 1:0,4-1,5, или с поливинилпирролидоном 1:0,016-0,18, или с уксусной кислотой и поливинилпирролидоном одновременно 1: 0,5-1,5: 0,020-0,025. Несмотря на известность применения изопропилового спирта в качестве нерастворителя в рабочих растворах фторполимера для получения селективно проницаемых мембран, использование его в таких больших (25-33 мас. %) концентрациях, а также в указанных выше сочетаниях с уксусной кислотой или поливинилпирролидоном, или с тем и другим одновременно является новым.

Экспериментальным путем авторами было установлено, что получаемые и используемые в предлагаемом способе рабочие растворы фторполимера имеют большую динамическую вязкость, меньшую просачиваемость и способность к самостеканию, термостабильны, не вызывают деформации открытопористых трубок на основе полимеров, неустойчивых к действию растворителей (ацетона, диметилацетамида, диметилформамида, N-метилпирролидона и др.) обычно используемых для получения селективно проницаемых фторполимерных мембран. В результате обеспечивается возможность получения широкого ассортимента качественных мембранных трубчатых фильтрующих элементов на основе открытопористых трубок как из инертных материалов, так и из полимеров, неустойчивых к действию растворителей, обычно используемых для изготовления рабочих растворов фторполимеров, например из АБС-пластика. Достижение результата стало возможным не из уровня техники, а из материалов настоящей заявки на изобретение. Оказалось, что использование в качестве нерастворителя рабочего раствора фторполимера для получения мембранного трубчатого фильтрующего элемента изопропилового спирта или его смесей с уксусной кислотой, или поливинилпирролидоном, или с уксусной кислотой и поливинилпирролидоном одновременно в указанных соотношениях и концентрации позволяют получать наиболее пригодные рабочие растворы для изготовления мембранных трубчатых фильтрующих элементов с необходимой вязкостью, термостабильностью, не вызывающие деформаций открытопористых трубок, а также регулировать и улучшать в широком диапазоне эксплуатационные свойства получаемых мембранных трубчатых фильтрующих элементов.

Не выявлены технические решения, имеющие признаки, совпадающие с отличительными признаками предлагаемого решения. Несовпадение технических свойств с точки зрения положительного эффекта заявляемого и известных объектов свидетельствует о том, что в результате налицо новая совокупность признаков решения, приводящая к возникновению нового свойства, обеспечивающего достижение положительного эффекта, что позволяет признать предложенный способ соответствующим критерию "существенные отличия" и условию изобретательского уровня.

Изобретение иллюстрируется следующими примерами.

Пример 1. В колбу с мешалкой и гидравлическим затвором, помещенную в термостат, заливают 150 г ацетона и добавляют к нему 51 г сополимера тетрафторэтилена (23-25 мас. %) с винилиденфторидом (ГОСТ 25428-82) марки Ф42Л. Горловину колбы герметично закрывают. Включают мешалку и обогрев термостата. Температуру в колбе поднимают до 40оС. Содержимое колбы перемешивают до полного растворения фторполимера и охлаждают до 30оС, затем при перемешивании содержимого колбы постепенно из капельной воронки приливают 99 г изопропилового спирта. Содержимое колбы перемешивают дополнительно в течение 60 мин. Полученный раствор фторполимера переливают в фильтр, фильтруют и обезвоздушивают в течение суток. Готовый рабочий раствор фтополимера имеет вязкость 4,6 Пас, стабилен при хранении при температуре помещения. С помощью специального приспособления его поливают па поверхность открытопористой стеклопластиновой трубки слоем толщиной 450 мкм. Открытопористую трубку с нанесенным рабочим раствором опускают в осадительную ванну, содержащую воду при температуре 12. Через 30 мин. полученный мембранный фильтрующий, трубчатый элемент перемещают в ванну промывки, где трижды в течение 20 мин каждый раз промывают свежей порцией воды. Испытание на водопроницаемость полученного трубчатого фильтрующего элемента на обессоленной воде при давлении 0,2 МПа и температуре 25oС составляет 25 дм3/(м2чат), после 5 ч от начала испытаний - 20 дм3/(м2чат). Полученный мембранный фильтрующий элемент является ультрафильтром. Указанный рабочий раствор фторполимера был также нанесен на открытопористую трубку из АБС-пластика (марки АБС ТУ 2211-015-00203521-96), при этом не отмечалась деформация открытопористой трубки (трубка из АБС-пластика, помещенная в просто ацетон, через несколько минут полностью распадается и превращается в гель).

Пример 2. Способ получения и испытания мембранного трубчатого фильтрующего элемента, как в примере 1, но в колбу загружают 85,5 г ацетона и 65,5 г N-метилпирролидона, затем добавляют 54 г сополимера марки Ф42Л и затем 75г изопропилового спирта. Готовый рабочий раствор сополимера имел вязкость 17,2 Пас и стабилен при хранении. Полив рабочего раствора сополимера осуществляют со скоростью 3 см/с на поверхность углепластиковой открыто-пористой трубки толщиной 450 мкм. водопроницаемость полученного трубчатого фильтрующего элемента составляла 150 дм32чат), после 5ч от начала испытания- 90 дм3/(м2чат); он является ультрафильтром. При нанесении рабочего раствора на открытопористую трубку из АБС-пластика не отмечали ее деформации.

Пример 3. Способ получения и испытания мембранного трубчатого фильтрующего элемента, как в примере 1, но в колбу загружают 107,2 г ацетона, 39 г сополимера марки Ф42Л и затем смесь 51,9г изопропилового спирта и 51,9г уксусной кислоты. Готовый раствор имел вязкость 2,8 Пас, стабилен при хранении, пролив рабочего раствора сополимера осуществляют со скоростью 6 см/с на поверхность стеклопластиковой открытопористой трубки толщиной 450 мкм. Водопроницаемость полученного трубчатого фильтрующего элемента 1000 дм3/(м2чат) после 5ч от начала испытания - 320 дм3/(м2чат). Он является микрофильтром. При нанесении рабочего раствора на открытопористую трубку из АБС-пластина не отмечалась деформация открытопористой трубки.

Пример 4. Трубчатый фильтрующий элемент получают, как в примере 2, из раствора сополимера Ф42Л, который готовят растворением 86,5 г сополимера в 200 г ацетона, затем добавляют смесь, состоящую из 125,5 г изопропилового спирта, 53г уксусной кислоты и 35г ацетона. Динамическая вязкость раствора 25 Пас. Раствор стабилен при хранении. Водопроницаемость полученного фильтрующего элемента при тех же условиях испытаний составляет 600 дм3/(м2чат), после 5ч от начала испытаний - 200 дм3/(м2чат). Он является ультрафильтром. При нанесении рабочего раствора на открытопористую трубку из АБС-пластика, не наблюдалось ее деформации.

Пример 5. Трубчатый фильтрующий элемент получают, как в примере 1, из раствора, который готовят растворением 85 г сополимера марки Ф42Л в смеси, состоящей из 180 г диметилформамида и 50 г ацетона, затем добавляют смесь, состоящую из 75 г изопропилового спирта, 50 г уксусной кислоты и 50г ацетона. Динамическая вязкость раствора 35,4 Пас. Раствор стабилен при хранении, полив его проводят при скорости 2 см/с. Водопроницаемость полученного фильтрующего элемента при тех же условиях испытания составляет 480 дм3/(м2чат), после 5 ч от начала испытаний - 340 дм3/(м2чат). Он является ультрафильтром. При нанесении рабочего раствора на открытопористую трубку из АБС - пластика не наблюдалось ее деформации.

Пример 6. Трубчатый фильтрующий элемент получают, как в примере 2, из раствора, который готовят растворением 100 г сополимера марки Ф42Л в 200г диметилацетамида, затем добавляют смесь, состоящую из 338 г изопропилового спирта, 125 г уксусной кислоты и 117,5 г диметилацетамида. Динамическая вязкость раствора 24,20 Пас. Раствор стабилен при хранении. Водопроницаемость полученного мембранного трубчатого фильтрующего элемента составляет 450 дм3/(м2чат), после 5 ч от начала испытаний - 300 дм3/(м2чат). Он является ультрафильтром. При нанесении этого рабочего раствора на открытопористую трубку из АБС-пластика не отмечается ее деформации.

Пример 7. Трубчатый фильтрующий элемент получают и испытывают, как в примере 1, из раствора, который готовят растворением 125 г сополимера марки Ф42Л в 172,5 г димитилацетамида и 50 г ацетона, затем добавляют смесь, состоящую из 50 г изопропилового спирта, 50 г уксусной кислоты, 2,5г поливинилпирролидона и 50г диметилацетамида. Динамическая вязкость рабочего раствора 233,00 Пас. Раствор стабилен при хранении. Скорость нанесения рабочего раствора на открытопористую трубку из АБС-пластика 1 см/с. Водопроницаемость полученного мембранного трубчатого фильтрующего элемента составляет 330 дм3/(м2чат), после 5 ч от начала испытаний - 100 дм3/(м2чат). Он является ультрафильтром. Деформация открытопористой трубки из АБС-пластика на отмечается.

Пример 8. Трубчатый фильтрующий элемент получают и испытывают, как в примере 2, из раствора, который готовят растворением 65 г поливинилиденфторида (фторполимер марки Ф 22.) в 260 г диметилацитамида, затем приливают смесь, состоящую из 50г изопропилового спирта, 50 г уксусной кислоты и 55 г димстилацетамида. Динамическая вязкость рабочего раствора 15,0 11 а.с. Раствор стабилен при хранении. водопроницаемость полученного фильтрующего элемента - 590 дм3/(м2чат), после 5ч от начала испытаний - 500 дм3/(м2чат). Он является ультрафильтром. При нанесении рабочего раствора на открытопористую трубку из АБС-пластика не отмечалось ее деформации.

Пример 9. Трубчатый фильтрующий элемент получают, как в примере 1, из рабочего раствора, который готовят растворением 2г поливинилпирролидона с молекулярной массой 10000 и 86,5 г сополимера марки Ф 42Л в 260 г диметилформамида, затем добавляют смесь, состоящую из 116,5 г изопропилового спирта и 35г диметилформамида. Динамическая вязкость рабочего раствора 59,00 Пас. Он стабилен при хранении. Скорость нанесения рабочего раствора на открытопористую трубку 1 см/с. Водопроницаемость полученного фильтрующего элемента - 590 дм3/(м2чат), после 5 ч от начала испытаний - 290 дм3/(м2чат). Он является ультрафильтром. При нанесении рабочего раствора на открытопористую трубку из АБС-пластика не отмечалось ее деформации.

Пример 10. Трубчатый фильтрующий элемент получают и испытывают, как в примере 2, из формовочного раствора, который готовят растворением 95 г сополимера марки Ф42Л и 2,5 г поливинилпирролидона и 200 г ацетона, затем добавляют смесь, состоящую из 153г изопропилового спирта и 49,5 г ацетона. Динамическая зябкость раствора 25 Пас. Раствор стабилен при хранении. Водопроницаемость полученного фильтрующего элемента составляет 190 дм3/(м2чат), после 5ч от начала испытаний - 70 дм3/(м2чат). Он является ультрафильтром. При нанесении рабочего раствора на открытопористую трубку из АБС-пластика деформации ее не наблюдалось.

Пример 11. Трубчатый фильтрующий элемент получают и испытывают, как в примере 2, из рабочего раствора, который готовят растворением 75 г сополимера марки Ф42Л и 22 г поливинилпирролидона в 200г диметилформамида, затем добавляют смесь, состоящую из 129 г изопропилового спирта и 74 г диметилформамида. Динамическая вязкость раствора 20 Пас. Раствор стабилен при хранении. Водопроницаемость полученного фильтрующего элемента составляет 910 дм3/(м2чат), после 5 ч от начала испытаний - 740 дм3/(м2чат). Он является микрофильтром. При нанесении рабочего раствора на открытопористую трубку из АБС-пластиrа деформации ее не наблюдалось.

Пример 12. Трубчатый фильтрующий элемент получают и испытывают, как в примере 1, из рабочего раствора, который готовят растворением 2 г поливинилпирролидона и 77,5 г сополимера марки Ф42Л в 200 г ацетона, затем добавляют смесь, состоящую из 85 г изопропиловoгo спирта, 90 г уксусной кислоты и 45,5 г ацетона. Динамическая вязкость раствора - 3,7 Пас. Он стабилен при хранении. Спорость полива раствора на открытопористую трубку была 6 см/с. Водопроницаемость полученного фильтрующего элемента составляет 650 дм3/(м2чат), после 5 ч от начала испытаний - 530 дм3/(м2чат). Он является ультрафильтром. При нанесение рабочего раствора на открытопористую трубку из АБС-пластика деформации ее не наблюдалось.

Пример 13. Трубчатый фильтрующий элемент получают и испытывают, как в примере 1, из рабочего раствора, который готовят растворением 40 г сополимера марки Ф42Л и 2,5 г поливинилпирролидона в 200 г диметилформамида, затем добавляют смесь, состоящую из 125 г изопропилового спирта и 72,5 г уксусной кислоты. Динамическая вязкость раствора 2,00 Пас. Он термостабилен при хранении. Полив рабочего раствора на открытопористую трубку проводят при скорости 8 см/с. Водопроницаемость полученного фильтрующего элемента составляет 3300 дм3/(м2чат), после 5 ч от начала испытаний - 950 дм3/(м2чат). Он является микрофильтром. При нанесении рабочего раствора на открытопористую трубку из АБС-пластика деформации ее не наблюдалось.

Пример 14. Трубчатый фильтрующий элемент получают и испытывают, как в примере 1, из рабочего раствора, который готовят растворением 40 г сополимера марки Ф42Л в 200 г N-митилпирролидона, затем добавляют смесь, состоящую из 147,5 г изопропилового спирта, 50 г уксусной кислоты и 2,5 г поливинилпирролидона. Динамическая вязкость раствора - 1,10 Пас. Он термостабилен при хранении. Полив рабочего раствора на открытопористую трубку проводят при скорости 8 см/с. Водопроницаемость полученного фильтрующего элемента составляет 3570 дм3/(м2чат), после 5 ч от начала испытаний - 1300 дм3/(м2чат). При нанесении рабочего раствора на открытопористую трубку из АВС-пластика деформации ее не наблюдалось.

Пример 15 (согласно прототипу). Трубчатый фильтрующий элемент получают и испытывают, как в примере 14, из рабочего раствора, который готовят растворением 40 г сополимера марки Ф42Л в 200 г ацетона, затем добавляют смесь, состоящую из 82,5 г изопропилового спирта, 145,5 г ацетона и 32,5 г воды. Динамическая вязкость раствора - 0,15 Пас. При хранении и снижении температуры он легко превращается в студень и становится непригоден для получения мембраны на поверхности открытопористой трубки. Рабочий раствор сразу после приготовления при температуре 40oС со скоростью 8 см/с наносят на поверхность открытопористой трубки.

Рабочий раствор сильно просачивается через стенку открытопористой трубки. Водопроницаемость полученного фильтрующего элемента составляет 21750 дм3/(м2чат), после 5 ч от начала испытаний - 10500 дм3/(м2чат). Он является микрофильтром. В полученном трубчатым фильтрующем элементе мембрана неоднородна по толщине как по диаметру, так и по длине трубки из-за быстрого самостекания рабочего раствора, хотя трубку быстро переводят в горизонтальное положение и вращают со скоростью 30 оборотов в мин.

Данные сведены в таблицу.

Из таблицы видно, чти при получении мембранных трубчатых фильтрующих элементов формированием на открытопористой трубке жидкой пленки из гомогенного раствора фторполимера, растворителя и нерастворителя и отверждением фторполимера в осадительной ванне при использовании в качестве нерастворителя высоких (25-33 мас. %) концентраций изопропанола (пример 1 и 2), или его смеси (по массе) 1,0:0,4-1,5 с уксусной кислотой (примеры 3-6,8) или 1,0:0,016-0,18 с поливинилпирролидоном (примеры 9-11), или 1:0,5-1,5:0,015-0,027 с уксусной кислотой и поливинилпирролидоном одновременно (примеры 7, 12-14) при следующем соотношении компонентов раствора (мас%): фторполимер 8-25, нерастворитель 20-40, растворитель (ацетон, диметилформамид, диметилацетамид, N-метилпирролидон) - остальное обеспечивается получение более высоковязких стабильных при хранении рабочих растворов, пригодных для получения качественных мембранных трубчатых фильтрующих элементов с фторполимерной мембраной в широком ассортименте (ультра- и микрофильтры).

Весьма высокие концентрации (20-40 мас. %) нерастворителя в рабочих растворах для получения фторполимерной селективно проницаемой мембраны позволяют использовать для получения качественных мембранных трубчатых фильтрующих элементов открытопористые трубки, изготавливаемые из полимеров, неустойчивых к действию обычно используемых растворителей для фторполимеров. Такие открытопористые трубки могут быть более дешевыми и доступными, например, из АБС-пластика (пример 7 и др.) Добавки в состав нерастворителя поливинилпирролидона увеличивают водопроницаемость мембранных трубчатых фильтрующих элементов с фторполимерной мембраной (см. пример 1 и 10, 9 и 11).

При более низких концентрациях изопропилового спирта и при добавке воды в рабочий раствор фторполимера (пример 15) резко уменьшается динамическая вязкость и стабильность рабочего раствора и он становится непригодным для получения качественных трубчатых фильтрующих элементов.

Использование предлагаемого способа получения трубчатых фильтрующих элементов обеспечивает по сравнению с известными способами следующие преимущества: 1. Возможность получения широкого ассортимента по размеру пор и, соответственно, водопроницаемости химстойких фторпластовых мембран на поверхности открытопористых трубок из вязких стабильных рабочих растворов.

2. Уменьшить себестоимость трубчатых фильтрующих элементов с фторпластовой мембраной за счет использования более дешевых компонентов (изопропилового спирта, уксусной кислоты) рабочего раствора, а также за счет возможности использовать открытопористые трубки из дешевых и более доступных материалов, например АБС-пластика.

3. Обеспечить гидрофилизацию фторполимерных мембран за счет поливинилпирролидона, что улучшает водопроницаемость и предотвращает загряняемость трубчатых фильтрующих элементов и необходимость их частой промывки.

Формула изобретения

Способ получения мембранных трубчатых фильтрующих элементов формированием на открытопористой подложке жидкой пленки из гомогенного раствора фторполимера, растворителя и нерастворителя и отверждением фторполимера с образованием селективно проницаемой мембраны, отличающийся тем, что на поверхность открытопористой трубки наносят раствор фторполимера, в котором в качестве нерастворителя используют 25-33 мас. % изопропилового спирта, или его смеси по массе 1,0: 0,4-1,5 с уксусной кислотой, или 1: 0,016-0,180 с поливинилпирролидоном, или 1: 0,5-1,5: 0,015-0,035 с уксусной кислотой и поливинилпирролидоном одновременно при следующем соотношении компонентов раствора, мас. %: Фторполимер - 8-25 Нерастворитель - 20-40 Растворитель - Остальное

РИСУНКИ

Рисунок 1

MM4A Досрочное прекращение действия патента из-за неуплаты в установленный срок пошлины заподдержание патента в силе

Дата прекращения действия патента: 31.01.2010

Дата публикации: 10.12.2011




 

Похожие патенты:

Изобретение относится к способу получения полупроницаемых мембран для тангенциальной фильтрации жидких смесей с целью концентрирования, разделения и очистки их компонентов

Изобретение относится к пористой фторуглеродной мембране, способу ее получения и к конструкции патронного фильтра на основе пористой фторуглеродной мембраны
Изобретение относится к производству мембран для разделения смесей газов, преимущественно сероводорода (Н2S) и углекислого газа (СО2)

Изобретение относится к способу получения мембранных трубчатых фильтрующих элементов для ультра- и микрофильтрации жидких смесей с целью концентрирования, разделения и очистки их компонентов

Изобретение относится к технологии получения гидрофильных пористых мембран с высокой водороницаемостью и может быть использовано при разделительных микро-, ультра-, иперфильтрационных процессах, при дегидратации влажных газов

Изобретение относится к технологии получения гидрофильных пористых мембран с высокой водороницаемостью и может быть использовано при изготовлении топливных или электрохимических элементов с высокой проводимостью
Изобретение относится к области мембранной техники, в частности к получению полупроницаемых фторуглеродных мембран, которые применяются для разделения газов и жидкостей в медицине, фармацевтической промышленности при создании особо чистых сред

Изобретение относится к мембранной технике и технологии, в частности к способам получения композитных материалов на основе катионообменных мембран с полианилином, и может быть использовано в электродиализных аппаратах для процессов концентрирования солевых растворов и разделения многокомпонентных смесей

Изобретение относится к технологии получения композитных наномодифицированных мембран и может быть использовано при изготовлении мембранно-электродных блоков, применяемых в электрохимических устройствах, в том числе в электролизерах воды низкого и высокого давления, портативных электронных устройствах. Мембрана выполнена из сополимера тетрафторэтилена с функциональными перфторированными сомономерами общей структурной формулы: где R: M-H, Li, K, Na; a=24,75-18,38 мол.%; b=78,62-81,12 мол.%; c=5,0-0,5 мол.%; и имеет толщину от 10 мкм и выше, плотность 1,93-2,10 г/см3, механическую прочность 16-22 МПа и коэффициент газопроницаемости по водороду (К) 1-3,7×10-16 м3м м-2Па-1с-1 при 20-90°С. Способ получения заключается в совмещении пористой пленки политетрафторэтилена с перфторсульфокатионитовым полимером в среде органического или водноорганического растворителя в присутствии модификатора. Модификатором являются углеводородные полимеры, фторполимеры, перфторполимеры или их смеси, неорганические соединения или их смеси. Обеспечиваются высокие перепады давления, высокая плотность тока и эффективность эксплуатации электролизной ячейки. 2 н. и 11 з.п. ф-лы, 3 табл., 28 пр.

Изобретение относится к мембранам из расширенного политетрафторэтилена, содержащим извилистые тонкие волокна, имеющим удлинение в одном направлении, равное 50%, и предел прочности матрицы при растяжении 50 МПа. Изделие получают путем растягивания высушенной экструдированной ленты политетрафторэтилена в одном направлении с образованием исходной мембраны из расширенного политетрафторэтилена; и сжатием мембраны из расширенного фторполимера в одном направлении под действием тепла или путем добавления растворителя. Мембрана из расширенного политетрафторэтилена может включать микроструктуру практически только из тонких волокон. Изобретение позволяет достичь высокого удлинения при сохранении прочностных характеристик фторполимерной мембраны. 6 н. и 32 з.п. ф-лы, 25 ил., 1 табл., 5 пр.

Изобретение относится к способу изготовления гибридной протон-проводящей мембраны, включающему синтез полианилина в протонообменной мембране во внешнем электрическом поле, при плотности тока 40-100 А/м2 проводят насыщение мембраны ионами анилиниума из 0,01-0,001 М раствора анилина на фоне 0,005 М раствора серной кислоты в течение 15-180 минут. Затем процесс полимеризации анилина в мембране проводят при плотности тока 40-100 А/м2 под действием инициатора полимеризации 0,01 М раствора хлорида железа(III) на фоне 0,005 М раствора серной кислоты в течение 60-180 минут. Способ характеризуется тем, что полученную мембрану помещают между растворами 0,0025-0,005 М гексахлорплатиновой кислоты и 0,025-0,05 М боргидрида натрия на фоне 0,5 М гидроксида натрия, при перемешивании растворов, на 60-90 минут. Технический результат заключается в разработке способа получения гибридной протонообменной мембраны, применение которой в низкотемпературном водородно-воздушном и кислородно-водородном топливном элементе повышает эффективность его работы. 9 пр., 1 ил., 2 табл.
Наверх