Фотолюминофор с длительным послесвечением

 

Изобретение предназначено для химической промышленности и может быть использовано при изготовлении источников аварийного автономного освещения, ограждений, подсветки указателей, шкал приборов, дорожных знаков. Фотолюминофор соответствует общей формуле Ме1-x-y MnxEuy(Al1-q-z YqLnz)2 О4, где Ln - Nd и/или Dy; Me - комбинация Sr-Mg и Са-Mg, 0,001<x0,002; 0,01<y0,05; 0,005<z0,05; 0,005q0,05, соотношение y/(x+z) = 1:2 - 2:1. [MgCO3]/[Sr CO3] =q и [MgCO3]/[CaCO3]=q. Фотолюминофор имеет длительное послесвечение - до 48 ч и повышенную яркость послесвечения в первые 10-30 мин после прекращения действия света. 1 з.п. ф-лы.

Изобретение относится к области материаловедения, а именно к области люминесцентных материалов с длительным послесвечением, обладающих способностью при облучении оптическим излучением запасать большое количество энергии и достаточно длительно выделять ее в виде оптического излучения ее после прекращения возбуждения, причем в качестве источника возбуждения могут быть использованы дневной свет, газоразрядные и накальные источники света, лампы ультрафиолетового облучения и т.д.

Длительность послесвечения таких люминофоров в целом ряде случаев оказывается вполне достаточной для практического их применения в качестве источников аварийного автономного освещения, для обозначения эвакуационных выходов при экстремальных ситуациях, ограждений, для подсветки различных указателей, в том числе рекламных и дорожных, шкал приборов, часов, для обозначения элементов дорожных и напольных покрытий и т.д.

Известны фотолюминофоры с длительным послесвечением на основе сульфидных соединений типа (CaS, SrS): Bi или ZnS:Cu, имеющих общую формулу AпBУ1:Me (см. , например, SU, авторское свидетельство 1813779). Эти материалы, не обладая значительным временем послесвечения, отличались вместе с тем быстрой скоростью светонакопления, достаточной начальной яркостью и возможностью воспроизводить основные цвета палитры. Для повышения эффективности фосфоресценции в состав сульфидных люминофоров часто вводили второй активатор. Так для SrS, CaS:Bi благоприятное воздействие оказывала добавка Sm и Сu, а для ZnS: Cu - добавка Со. Однако невысокие параметры гидро- и атмосферостойкости вызывали быстрое разрушение люминофоров первого поколения на воздухе, при солнечном облучении и в воде.

Практическое применение этих материалов ограничивалось их использованием только в закрытых помещениях при постоянстве температуры и влажности.

Известно применение редкоземельных элементов для активации люминофоров (RU, патент 2004566). В частности, был предложен достаточно долго светящий люминофор состава: К2 Y1-x-y Nbх Ybу F5, где 0,001<х<0,150;2О3. Эти соединения являются формульными и структурными аналогами природного минерала шпинели - MgAl2O4. Эффективная люминесценция в алюминатах обеспечивается введением в их кристаллическую решетку активаторов в виде редкоземельных элементов, в частности двухвалентного европия в концентрации [Еu+2] от 1.10-2 до 8 ат.%. Для значительного увеличения длительности послесвечения в состав люминофора дополнительно к активатору - европию введен второй редкоземельный ион, взятый из группы диспрозий, церий, неодим, эрбий, как индивидуально, так и в их сочетании. В этом случае удается накопить большие светосуммы, высвечивающиеся в течение 1-40 ч. Люминофоры длительного свечения на алюминатной основе подробно описаны в патенте US 5424006.

Однако алюминатные фотолюминофоры состава (Ca, Sr)Al2O4:Eu, Dy, несмотря на относительные высокие светотехнические показатели, также не позволяли достичь уровня яркости послесвечения, обеспечивающего гарантированную видимость информации, отображаемой с помощью фотолюминофоров с длительным послесвечением. Поэтому применение фотолюминофоров в различных указателях, аварийных знаках, различных информационных табло оставалось под вопросом.

Техническая задача, решаемая посредством настоящего изобретения, состоит в создании фотолюминофора с длительным послесвечением, обеспечивающего повышенную яркость послесвечения в первые 10-30 мин после прекращения действия возбуждающего света, обладающего к тому же большой длительностью послесвечения (до 48 ч).

Технический результат, достигаемый при реализации указанного изобретения, состоит в обеспечении возможности использования фотолюминофоров в неблагоприятных условиях для рекламных и предупредительных нужд.

Указанный технический результат достигается применением пригодного для использования в составе красок, мастик и других покрытий, а также пластиков, используемых для создания элементов конструкций информационных экранов и ограждений, фотолюминофора на основе алюминатов кальция и стронция, активированных марганцем, европием, диспрозием, неодимом, причем в состав люминофора в качестве примесей введена комбинация разновалентных соактиваторов Mg и Y, с получением общей химической формулы Me1-x-y Mnx Euy (Al1-q-z Yq Lnz)2 O4, где Ln - Nd и/или Dy, Me -комбинация Sr-Mg и (или) Ca-Mg, а величины x, у, q, z соответствуют значениям: 0,001<х0,002, 0,01<у0,05, 0,005<z0,05, 0,005<q0,05 при соотношении у/(х+z), изменяющегося в пределах от 1:2 до 2:1. Предпочтительно относительная концентрация примеси Mg в фотолюминофоре соответствует значениям исходных мольных долей: [MgCO3]/[SrСО3]=q и
[MgCО3]/[СаСО3]=q,
где q=0,005-0,05.

Предлагаемый состав имеет кристаллическую структуру по типу шпинели.

Указанная комбинация активирующих примесей обеспечивает высокие значения накопляемой светом суммы фотолюминофором при возбуждении сине-голубым излучением видимого спектра.

Сочетание ионов Мn+2 и Nd+3 (Dy+3), Y+3 и Mg+2 определяет спектр и концентрацию электронно-дырочных ловушек, глубина залегания которых лежит в диапазоне 0,5-0,6 эВ выше потолка валентной зоны. Такая энергия активации соответствует максимальной интенсивности послесвечения при нормальных внешних условиях эксплуатации в течение 10-30 минут после прекращения возбуждения.

Для получения фотолюминофора оптимального состава смешали 0,910 М SrCO3, 0,04 М MgCO3, 0,920 M Al2O3 0,04 М Y2O3 с 0,050 М Еu2О3 и 0,040 М Dy2О3. Перемешивают компоненты в барабанной мельнице до полной гомогенности исходной шихты. Полученную шихту далее загружают в тигли, защищают слоем активированного угля, закрывают крышкой и ставят в нагретую до 500oС печь. Поднимают температуру в печи до 1320oС, выдерживают в течение 2 часов. Затем тигли охлаждают вместе с печью до 700oС, после чего дальнейшее охлаждение тигля происходит вне печи при нормальных внешних условиях (Т=20oС). Остывший тигель разбивают, извлекают спеченный королек и из него выделяют среднюю часть, не имеющую посторонней окраски и обладающую яркой фотолюминесценцией.

Синтезированные аналогичным образом образцы люминофоров, состав которых соответствует приведенному в независимом пункте формулы изобретения, хорошо фотолюминесцируют при облучении их дневным светом и при этом обладают интенсивной фосфоресценцией, хорошо видимой в темноте.

Кристаллическая матрица на основе Sr хорошо возбуждается голубыми лучами и излучает зеленый свет. Спектры возбуждения и излучения матрицы на основе катиона кальция отличаются от соответствующих спектров для матрицы на основе катионов стронция смещением в сторону меньших длин волн. Максимум возбуждения соответствует области сине-фиолетовых лучей и составляет 350-400 нм. Спектр излучения такой матрицы соответствует голубому излучению, хорошо сочетающемуся с кривой видимости для сумеречного зрения колориметрически нормального человеческого глаза.

Исследования фосфоресценции синтезированных образцов проводили при возбуждении излучением стандартного источника белого света типа D65.

Время и интенсивность послесвечения имеют слабую зависимость от коэффициента поглощения возбуждающего света. Более длинноволновое возбуждение соответствует, как правило, меньшей поглощательной способности фотолюминофора, что приводит к меньшей удельной яркости свечения, но позволяет задействовать большее количество ловушек в объеме люминофора, поэтому рассеянный свет дневного небосклона является благоприятным для эксплуатации предлагаемых составов.

Действие разновалентных примесей Mg+2, Y+3, Mn+2 благоприятно сказывается на характеристиках фотолюминофоров, выполненных на основе алюминатов стронция и кальция. Оптимальные количества соответствуют величинам х= 0,002-0,005 q=0,02-0,05.

Предлагаемый фотолюминофор может быть использован в многочисленных вариантах знаков и прочих обозначений, используемых в аварийной обстановке, обусловленной внезапной потерей освещенности.

Вышеприведенные фотолюминофоры могут быть использованы при создании современных аварийных источников подсветки, информационных табло, указательных знаков безопасности, используемых в аварийных ситуациях, сопровождающихся внезапным выключением источников света и наступлением темноты, пропаданием видимости вследствие задымления, тумана и т.д.


Формула изобретения

1. Фотолюминофор на основе алюминатов кальция и стронция, активированных марганцем, европием, диспрозием и/или неодимом, отличающийся тем, что дополнительно в состав фотолюминофора в качестве активатора введены Mg и Y с получением общей химической формулы
Ме1-х-у МnxEuу(Аl1-q-z YqLnz)2О4,
где Ln - Nd и/или Dy;
Ме - комбинация Sr-Mg и Са-Mg,
а величины х, у, q, z соответствуют значениям 0,001<х0,002; 0,01<у0,05; 0,005<z0,05; 0,005q0,05 при соотношении у/(х+z), изменяющемся в пределах 1: 2-2: 1.

2. Фотолюминофор по п. 1, отличающийся тем, что относительная концентрация Mg в фотолюминофоре соответствует значениям исходных мольных долей: [MgCO3] /[SrCO3] = q и [MgCO3] /[Ca CO3] = q, где q= 0,005-0,05.

NF4A Восстановление действия патента СССР или патента Российской Федерации на изобретение

Дата, с которой действие патента восстановлено: 20.12.2007

Извещение опубликовано: 20.12.2007        БИ: 35/2007




 

Похожие патенты:

Изобретение относится к светоизлучающим материалам для индикаторной техники, конкретно к фотолюминофорам (Фл) для газоразрядных (плазменных) панелей (ПП), возбуждаемых постоянным и переменным полем, и способу получения такого люминофора

Изобретение относится к индикаторной технике, конкретно к излучающим материалам для экранов плазменных панелей (ПП) - фотолюминофорам /ФП/ и способу их получения
Изобретение относится к области светотехники и автономного аварийного освещения

Изобретение относится к области люминофоров
Изобретение относится к системе и технике определения подлинности и исключения возможности фальсификации противопожарных композиций путем введения в их состав «скрытой метки», визуализация которой происходит в свете с определенной длиной волны

Изобретение относится к фотолюминофорам, предназначенным для преобразования излучения синих светодиодов в желто-красную область спектра с целью получения результирующего белого света, в частности к легированному церием люминофору на основе иттрий-алюминиевого граната, используемому в двухкомпонентных светодиодных источниках освещения

Изобретение относится к люминесцентным композициям, применяемым для изготовления устройств общего и местного освещения
Наверх