Плавильный водоохлаждаемый тигель

 

Изобретение относится к плавильному оборудованию, а именно к конструктивным элементам вакуумно-дуговых гарнисажных печей, а также плазменно-дуговых и электронно-лучевых печей с холодным подом. В предлагаемом тигле, состоящем из упруго соединенных между собой биметаллических плит, биметаллические плиты получены путем соединения медного и алюминиевого металлических слоев, а водоохлаждаемые каналы выполнены в алюминиевом слое. Изобретение позволяет изготавливать гарнисажные водоохлаждаемые тигли с рабочей площадью пода 4 м2 и более, снижать массу тигля и затрат на изготовление тигля. 1 ил., 1 табл.

Изобретение относится к плавильному оборудованию, а именно к конструктивным элементам вакуумно-дуговых гарнисажных печей, а также плазменно-дуговых и электронно-лучевых печей с холодным подом.

Известен плавильный водоохлаждаемый тигель, содержащий металлический корпус с герметичными внутренними каналами охлаждения, корпус выполнен из биметаллических плит, полученных путем сварки взрывом медного слоя со слоем нержавеющей стали толщиной 10 мм. В полученной таким образом плите посредством направленного перемещения специальной фрезы формируются каналы охлаждения в медном слое. После формирования канала, в него вставляется компенсатор и приваривается к стальному слою (патент РФ 2166714) - прототип.

В указанной конструкции регулировка тепловых процессов в тигле осуществляется в медном слое плиты за счет организации в ней герметичных водоохлаждаемых каналов, а стальной наружный слой применяется в конструкционных и технологических целях. Главным фактором, определяющим работоспособность тигля, является допустимая величина градиентов температур, которые в значительной мере определяются толщиной рабочей водохлаждаемой оболочки. При данной конструкции системы водоохлаждаемых каналов, при плавке титана, по расчетным и экспериментальным данным толщина медного слоя плиты не может быть менее 190-200 мм. Это в свою очередь накладывает ограничения на максимальные размеры заготовки медной плиты, т.к. при существующих технологических процессах получение слитка меди с массой более 10 т становится экономически неоправданным. При данном ограничении, а также с учетом припусков на мех. обработку биметаллических плит максимальная возможная рабочая площадь пода тигля не превышает 4 м2. Последнее обстоятельство не позволяет реализовать вариант конструкции тигля, имеющего размеры пода более указанной величины.

Задачей, на решение которой направлено данное изобретение, является упрощение технологии изготовления гарнисажных водоохлаждаемых тиглей с рабочей площадью пода 4 м2 и более, снижение массы тигля, снижение затрат на изготовление тигля, повышение технологичности конструкции тигля.

Поставленная задача решается тем, что в предлагаемом плавильном водоохлаждаемом тигле, состоящем из упруго соединенных между собой биметаллических плит, содержащих внутренние герметические водоохлаждаемые каналы и компенсаторы, жестко присоединенные к наружной поверхности тигля, биметаллические плиты получены путем соединения медного и алюминиевого металлических слоев, а водоохлаждаемые каналы выполнены в алюминиевом слое.

Изобретение поясняется чертежом, где показано поперечное сечение плиты тигля с каналом системы охлаждения. Биметаллическая плита состоит из медного слоя 1 и алюминиевого слоя 2, в алюминиевом слое выполнены герметичные каналы 3, в которых установлены на сварке компенсаторы 4.

В предлагаемом варианте конструкции соединение между собой алюминиевого и медного слоя плиты выполнено посредством сварки взрывом. При этом технологический процесс сварки накладывает ограничения на толщину медного слоя. Чем меньше толщина, тем проще осуществить сварное соединение и, как следствие, меньше стоимость биметаллической плиты. Вместе с тем, поверхность медного слоя плиты подвергается воздействию теплового потока от гарнисажа, на этой поверхности имеют место максимальные температуры и максимальные градиенты температур. Из-за различной теплопроводности алюминия и меди возможна ситуация, при которой произойдет прогрев медного слоя плиты по всей толщине, а на поверхности сварного соединения появятся резкие градиенты температур.

Теплофизические свойства алюминия и меди заметно отличаются друг от друга. Кроме того, для обоих материалов анализируемые свойства зависят от температуры. Материалы имеют различную температуру плавления, для меди Тпл= 1083oС, для алюминия Тпл=660oС. В таблице приведены теплофизические свойства меди и алюминия для различных температур.

Табличные данные свидетельствуют о том, что для меди теплоемкость и теплопроводность уменьшается с увеличением температуры, а для алюминия напротив, обе рассматриваемые величины возрастают. Плотность меди и алюминия во всем приведенном интервале температур можно считать постоянной.

Условиями нормальной работоспособности конструкции тигля следует считать: - нагрев меди не выше 350oС, - нагрев алюминия не выше 200oС, т.к. при более высоких температурах резко изменяются его механические и прочностные свойства.

Пример: Плавка в вакуумно-дуговой гарнисажной печи титанового сплава ВТ6. На основе имеющейся экспериментальной информации была определена величина максимального возможного теплового потока, его величина составила 110 кВт/м2 oC. На основе расчетных данных, позволяющих осуществить процесс сварки, полагалось, что толщина медного слоя равна 35 мм. Толщина биметаллической плиты - 200 мм, следовательно толщина алюминиевого слоя равняется 165 мм. Схема охлаждения последовательная. При расчете использован численный метод конечных элементов.

Теплофизические свойства материалов в зависимости от температуры, приведенные в таблице, задавались непосредственно в качестве исходных данных в интервале температур между заданными экспериментальными значениями. Теплоемкость и теплопроводность материалов определялась путем линейной интерполяции. Относительная погрешность решения задачи равнялась 0,001.

Максимальная величина температуры на границе гарнисажа и медного слоя составляет 334,67oС и наблюдается в областях, примыкающих к границе плиты и наиболее удаленных от каналов охлаждения. На границе Cu-Al максимальное значение температуры составляет 195oС и не превышает температуру 200oС.

Величина деформации в каждой точке отдельной плиты зависит от градиента температур, коэффициента линейной деформации, модуля упругости материала. Для уменьшения напряжений в элементах конструкции тигля целесообразно снизить величину градиента температур. Особый интерес представляет граница двух металлов, поскольку они обладают различными теплофизическими характеристиками, такими как теплопроводность, коэффициент линейного расширения и теплоемкость. Наличие большого градиента температур приведет к возникновению больших изгибающих напряжений в двух взаимно перпендикулярных направлениях, их величина равна: = ET, где - эквивалентное напряжение; Е - модуль продольной упругости; - коэффициент линейного расширения; Т - градиент температур.

На границе: Cu = ECuCuTCu; Al = EAlAlTAl.

Для меди: ЕСu=110 ГПа;
Cu = 1610-6 1/град.

Для алюминия: ЕАl=70 ГПа при температуре 20oС;
EAl=58 ГПа при температуре 200oС;
Al = 24,510-6 1/град.
Прочностные расчеты свидетельствует о том, что эквивалентные напряжения в алюминиевом слое плиты, за исключением отдельных узких зон, примыкающих к границе, находятся в интервале от 0 до 262 МПа. Для алюминиевого сплава В-95 предел текучести составляет 280 МПа, следовательно он может быть использован в конструкции плиты. В медном слое плиты максимальное значение эквивалентных напряжений составляет 3,50 МПа и наблюдается в отдельных, сравнительно небольших угловых зонах, что также не превышает допустимых значений.

Достоверность данной методики расчетов подтверждается совпадением расчетных значений температур и экспериментальными измерениями температур в процессе плавки на эксплуатируемом в настоящее время тигле, изготовленном из биметаллической плиты, состоящей из медного слоя толщиной 190 мм и стального слоя - 10 мм.


Формула изобретения

Плавильный водоохлаждаемый тигель, состоящий из упругосоединенных между собой биметаллических плит, содержащих внутренние герметические водоохлаждаемые каналы и компенсаторы, жестко присоединенные к наружной поверхности тигля, отличающийся тем, что биметаллические плиты получены путем соединения медного и алюминиевого металлических слоев, а водоохлаждаемые каналы выполнены в алюминиевом слое.

РИСУНКИ

Рисунок 1, Рисунок 2



 

Похожие патенты:

Изобретение относится к специальной электрометаллургии, в частности к вакуумным дуговым гарнисажным печам для выплавки слитков высокореакционных металлов и сплавов, преимущественно титановых

Изобретение относится к металлургии, а именно к плавке и литью тугоплавких реакционных металлов в гарнисажных печах преимущественно с плазменным или электронно-лучевым нагревом

Изобретение относится к плавильному оборудованию, а именно к конструктивным элементам вакуумно-дуговых гарнисажных печей, плазменно-дуговых и электронно-лучевых печей с холодным подом

Изобретение относится к нанесению покрытий в вакууме, в частности к изготовлению испарительных элементов, используемых для испарения свинца, висмута, олова и их сплавов в установках нанесения покрытий на рулонные материалы

Изобретение относится к металлургии, в частности к индукционным печам для плавки металлов в защитной среде

Изобретение относится к металлургии конкретно к конструкции металлических тиглей для плавки и разливки алюминия

Изобретение относится к специальной электрометаллургии, в частности к вакуумным дуговым гарнисажным печам для выплавки слитков высокореакционных металлов и сплавов, преимущественно титановых

Изобретение относится к электротехнике, а именно электросталеплавильному и электросварочному оборудованию

Изобретение относится к плавильному оборудованию, а именно к конструктивным элементам вакуумно-дуговых гарнисажных печей, плазменно-дуговых и электронно-лучевых печей с холодным подом

Изобретение относится к области металлургии, а именно к плавке и литью тугоплавких металлов в вакуумных гарнисажных тигельных печах, и может быть использовано в производстве фасонных отливок, например из титановых сплавов

Изобретение относится к металлургии, а именно к плавке и литью тугоплавких металлов в дуговых, электронно-лучевых и других печах, где плавка ведется в гарнисажных тиглях, и может быть использовано в производстве фасонных отливок из тугоплавких, например, титановых сплавов

Изобретение относится к электрометаллургии

Изобретение относится к металлургии и может быть использовано при электроплавке металлов

Изобретение относится к подовому электроду для металлургической печи постоянного тока, предназначенной для обработки металлов в жидком состоянии, в частности, стали

Изобретение относится к металлургии, в частности к конструкциям вакуумных дуговых печей для выплавки слитков тугоплавких, высокореакционных металлов и сплавов, например титановых
Наверх