Способ получения алкилхлоргерманов

 

Описывается способ получения алкилхлоргерманов, заключающийся во взаимодействии алкилгермана с деалкилирующим реагентом, в качестве которого используют хлорангидрид органической кислоты, предпочтительно уксусной, и хлорид непереходного металла II-IV групп, предпочтительно хлористый алюминий, взятых в эквимолярном соотношении, при стехиометрическом соотношении алкилгермана с деалкилирующим реагентом, при этом синтез ведут при нагревании до температуры 100-200oС вплоть до окончания реакции с последующим выделением целевого продукта вакуумной перегонкой. Техническим результатом является получение алкилхлоргерманов с содержанием основного вещества на уровне 99% и выходом 90-95%. 3 з.п. ф-лы.

Изобретение относится к химии металлорганических соединени, а именно германийорганических, и касается разработки способа получения алкилхлоргерманов, используемых в качестве полупродуктов для получения стимуляторов роста растенний, лекарственных и биологически активных веществ, а также в качестве материала для волоконной оптики, например при использовании диметилдихлоргермана.

Известен способ получения метилхлоргерманов общей формулы (СН3)nGеСl4-1, где n= 1, 2 или 3 диспропорционированием четыреххлористого германия с метилсиланом общей формулы (СН)3SiX, где Х=СН3, Сl, OSi(CH)3 в автоклаве в течение 2,5-65 часов в присутствии катализатора и очисткой продукта реакции от отработанного катализатора (Organometallics, 1985, 4, 1087-1089).

Недостатком способа является сложность аппаратурного оформления (использование автоклава), высокая температура и достаточно длительное время проведения процесса, а также необходимость очистки продукта реакции от отработанного катализатора. Другим недостатком является получение метилхлоргерманов в виде смеси.

Известен способ получения метилхлоргерманов общей формулы (CH3)nGeCln-4, где n=1,2 или 3 диспропорционированием четыреххлористого германия с метилсиланом общей формулы (СН3)3SiХ, где Х=СН3, Сl, OSi(СН3)3 в газовой фазе при температуре 200-550oС в течение 5-60 с в присутствии катализатора, в качестве которого используют палладий, нанесенный на носитель, а в качестве носителя используют Аl2O3 или древесный уголь (авторское свидетельство N 1566691, C 07 F 7/00, заявл. 05.10.87).

Этот способ по сравнению с описанным выше позволяет производить процесс в непрерывном режиме и за значительно короткое время (секунды вместо 2,5-60 часов), не требует сложного аппаратурного оформления (проточный реактор вместо автоклава) и очистки продуктов реакции от отработанного катализатора.

Недостатком способа является получение метилхлоргерманов в виде смеси, которую отделяют от фракции метилхлорсиланов. Затем из смеси метилхлоргерманов выделяют индивидуальные соединения.

Наиболее близким по технической сущности и достигаемому эффекту является способ получения метилхлоргерманов, в частности диметилдихлоргермана и триметилхлоргермана, взаимодействием тетраметилгермана с деалкилирующим реагентом, в качестве которого используют смесь хлористого ацетила с безводным хлоридом алюминия, взятых в эквимолярном соотношении, при стехиометрическом соотношении метилхлоргермана с деалкилирующим реагентом, при этом реакцию ведут при комнатной температуре. В результате реакции получают диметилдихлоргерман или триметилхлоргерман и комплексную соль алюминия. Из полученной смеси целевой продукт выделяют перегонкой в вакууме, а затем очищают ректификацией (Tetrahedron Letters N 45, p. 5493-5407, 1966).

Авторы предлагаемого изобретения воспроизвели способ, описанный в прототипе для других алкилхлоргерманов.

Достоинство вышеупомянутого способа заключается в том, что при получении алкилхлоргерманов начиная с пропилхлоргермана не происходит изомеризации алкильного радикала. Это важно для ряда областей их практического применения, т. к. при использовании в качестве полупродуктов для лекарственных и биологически активных вешеств бывает необходимо использование определенного изомера, а не их смесь.

Недостатком способа является относительно невысокий выход (СН)3GеСl и (СН3)2GeCl2, 74 и 70% соответственно. Недостатком является также и то, что полученные продукты, выделенные из смеси, необходимо подвергать ректификации для очистки последних от непрореагировавших исходных веществ и продуктов неполного деалкилирования. С таким же невысоким выходом получены другие алкилхлоргерманы при воспроизведении прототипа авторами предлагаемого изобретения.

Задачей, на решение которой направлено предлагаемое изобретение, является повышение выхода алкилхлоргермангов и упрощение способа за счет исключения стадии ректификации при получении продукта с высоким содержанием основного вещества на уровне 99%.

Эта задача решается за счет того, что в способе получения алкилхлоргерманов взаимодействием алкилгермана с деалкилирующим реагентом, в качестве которого используют хлорангидрид органической кислоты и хлорид непереходного металла II-IV групп, взятых в эквимолярном соотношении, при стехиометрическом соотношении алкилгермана с деалкилирующим реагентом и последующим выделением целевого продукта вакуумной перегонкой, реакцию ведут при нагревании до температуры 100-200oС.

В качестве хлорида непереходного металла можно использовать AlCl3, SnCl4, BCl3, ZnCl2 и др., но в силу дешевизны и доступности целесообразно использовать хлорид алюминия.

В качестве хлорангидрида органической кислоты можно использовать хлорангидрид уксусной, пропионовой, масляной, изомасляной и др. кислот, но в силу дешевизны и доступности, предпочтительно использовать хлорангидрид уксусной кислоты (хлористый ацетил).

Целесообразно при получении продуктов с максимально возможным выходом на уровне 94-95% реакцию вести, по существу, нагреванием до 150oС.

Сущность изобретения заключается в том, что при получении вышеуказанных соединений реакцию ведут при нагревании до температуры 100-200oС вплоть до окончания реакции. Критерием окончания реакции является прекращение газовыделения. Эта температура подобрана экспериментальным путем и, как показали опыты, является оптимальной для решения поставленной задачи. Именно при такой температуре заметно повышается выход продукта. При температуре ниже 100oC выход продукта практически не повышается, а при температуре выше 200oС - выход заметно понижается. Понижение выхода продукта при вышеупомянутой температуре происходит за счет протекания побочных реакций. Исключение стадии ректификации и получение при этом продукта с высоким содержанием основного вещества можно объяснить тем, что проведение реакции при вышеуказанной температуре является оптимальной для возможно полного превращения исходных веществ.

Содержание основного вещества в получаемых продуктах, по данным газожидкостной хроматографии, находится на уровне 99% без использования ректификации.

Выход продукта составляет 90-95%.

Предлагаемый способ используется для получения метилхлоргерманов и других алкилкилхлоргерманов начиная с пропилхлоргермана. В сравнении с прототипом предлагаемый способ позволяет увеличить выход алкилхлоргеманов с 70-74% до 90-95% и упростить способ за счет исключения стадии ректификации.

Пример 1. В 3-горловую колбу, снабженную мешалкой и обратным холодильником, в атмосфере инертного газа загружают 250 г (0,83 моль) н-тетрабутилгермания и 233 г (174, моля) АlСl3. При перемешивании к реакционной смеси прикапывают 136 г (1,74 моля) ацетила хлористого. Затем реакционную смесь нагревают до 150oС. Через 0,5 ч газовыделение прекращается, что является критерием окончания реакции.

Целевой продукт выделяют из полученной смеси вакуумной перегонкой. По данным газожидкостной хроматографии, содержание основного вещества в полученном продукте составляет 99%. Метод ЯМР подтвердил получение дибутилдихлргермана в виде определенного изомера, а не смеси изомеров. Полученное вещество представляет собой бесцветную жидкость. Показатель преломления Nd(20) = 14728. Выход продукта составляет 95%.

Пример 2. Условия опыта, как в примере 1, только загружают 350 г (2,64 моля) тетраметилгермана (СН3)4Ge и 810 г (6,07 моль) АlСl3. При перемешивании к полученной смеси прикапывают 476,6 г (6,07 моль) ацетила хлористого. Затем реакционную смесь нагревают до 200oС. Через 2 ч газовыделение прекращается, что свидетельствует об окончании реакции.

Полученное вещество представляет собой бесцветную жидкость с температурой кипения 123oС. По данным газожидкостной хроматографии содержание основного вещества в полученном диметилдихлоргермане составляет 99%. Выход продукта составляет 95%.

Пример 3. Условия, как в примере 1, только тетраметилгермана берут 350 г (2,64 моля), АlСl3 - 404,5 г (3,03 моль), ацетила хлористого - 238,3 г. Получают триметилхлоргерман с содержанием основного вещества, по данным газожидкостной хроматографии, на уровне 99%, выход составляет 95%.

Формула изобретения

1. Способ получения алкилхлогерманов взаимодействием алкилгермана с деалкилирующим реагентом, в качестве которого используют хлорангидрид органической кислоты и хлорид непереходного металла II-IV групп, взятых в эквимолярном соотношении, при стехиометрическом соотношении алкилгермана с деалкилирующим реагентом, и выделением целевого продукта вакуумной перегонкой, отличающийся тем, что, реакцию ведут при нагревании до температуры 100 - 200oС.

2. Способ по п. 1, отличающийся тем, что в качестве хлорангидрида органической кислоты используют хлорангидрид уксусной кислоты.

3. Способ по п. 1, отличающийся тем, что в качестве хлорида непереходного металла II-IV групп используют безводный хлористый алюминий.

4. Способ по пп. 1-3, отличающийся тем, что реакцию ведут, по существу, при нагревании до 150oС.

MM4A Досрочное прекращение действия патента из-за неуплаты в установленный срок пошлины заподдержание патента в силе

Дата прекращения действия патента: 15.11.2008

Дата публикации: 20.04.2011




 

Похожие патенты:

Изобретение относится к способу выделения и регенерации германийорганического соединения из смешанного раствора, содержащего сахарид(ы) и германийорганическое соединение

Изобретение относится к способу получения новых соединений - 6,8,10-тринитро-1,4-диоксаспиро[4,5] дека-6,9-диенатов катионов p-, d-, и f - элементов формулы I (анионных - комплексов Мейзенгеймера), которые могут быть использованы для металлокомплексного катализа

Изобретение относится к биотехнологии и касается производства и применения биопрепаратов, в частности иммуномодуляторов, для коррекции нарушений иммунной системы и используемых для лечения и профилактики инфекционных, инвазионных и незаразных болезней млекопитающих, птиц и рептилий

Изобретение относится к химии фосфор- органических соединений, а именно к новому способу получения S-трифенилгермиловых эфиров диалкилдитио- и тетратиофосфорных кислот общей формулы (I) (RX)SGePh3 где R низший алкил; Х 0, S

Изобретение относится к химии фосфорорганических соединений, а именно к новому способу получения S-триметил- или трифенилгермиловых эфиров 4-метоксифенилдитиофосфоновых или тритиофосфоновых кислот общей формулы I Ar- где Ar=MeOC6H4; R-низший алкил RI=низший алкил, фенил; X=0, S Триалкилсилиловые и станниловые аналоги предлагаемых гермиловых эфиров дитио- и тритиофосфоновых кислот нашли применение в качестве противоклещевых и инсектицидных препаратов, а также могут найти применение в качестве полупродуктов для целенаправленного синтеза аналогов таких инсектицидных препаратов как паратион, лейбацид, тимет, метасистокс (Патент США N 3992425 (1976)

Изобретение относится к новому способу получения неизвестных ранее триалкилгермил(2-триалкилстаннилокси-2-фенил)ацетатов общей формулы C6H5CH[OSn(R13)] COOGe(R)3, где R и R' - низший алкил, которые могут быть использованы в качестве синтетических мономеров для построения биополимерных структур, а также могут представлять интерес для поиска фармацевтических препаратов, обладающих противоопухолевой активностью

Изобретение относится к химии кремнийорганических соединений, а именно к способу получения алкоксисиланов

Изобретение относится к химии кремнийорганических соединений, а именно к способу получения алкоксисиланов

Изобретение относится к классу гетероциклических металлоценов и содержащих их каталитических систем, а также способу полимеризации присоединяющихся полимеризуемых мономеров с использованием указанной каталитической системы, причем указанные гетероциклические металлоцены соответствуют формуле (I) YjR''iZjjMeQkP1, где Y представляет координирующую группу, содержащую центральный радикал с шестью -электронами, непосредственно координирующий Ме, с которым конденсировано одно или несколько колец, содержащих по крайней мере один атом, не являющийся атомом углерода и выбранный из S; R'' представляет двухвалентную мостиковую связь между группами Y и Z; Z представляет координирующую группу, имеющую те же самые значения, что и Y; Me представляет переходный металл группы 3, 4, 5, 6; Q - представляет галоген или линейный или разветвленный С1-С6-алкил; Р представляет противоион; i=0 или 1; j=1-3; jj=0-2; k=1-3 и 1= 0-2

Изобретение относится к способу получения SiOH-функциональных дендримерных карбосиланов

Изобретение относится к способу получения SiOH-функциональных дендримерных карбосиланов
Изобретение относится к способу получения комплексных соединений циркония или гафния с D-фруктозой общей формулы Me4(OH)8-n(C6Н9O5)nН2O16-2n]Cl8, где Me - цирконий или гафний, n = 1 - 4, целое число, путем взаимодействия оксихлорида циркония или гафния с D-фруктозой

Изобретение относится к медицине, конкретно к новым замещенным N-силатранилметилацетамидам, стимулирующим перистальтику кишечника и которые могут найти применение при лечении атонии кишечника

Изобретение относится к медицине, конкретно к новым замещенным N-силатранилметилацетамидам, стимулирующим перистальтику кишечника и которые могут найти применение при лечении атонии кишечника
Наверх