Способ контроля радиотехнического качества производимых диэлектрических материалов с квази (якобы) закрытой и закрытой пористостью

 

Изобретение относится к радиотехнике, в частности к способам контроля радиотехнических свойств производимых диэлектрических материалов для подземных антенн метрового и более высоких диапазонов волн при производстве блоков из материалов, считающихся материалами с закрытой пористостью. Техническим результатом предложенного способа является обеспечение качества контроля различных типов материалов, впитывающих во внутренний объем диэлектрика влагу. Для отбраковки материалов с квазизакрытой пористостью, впитывающих влагу, образец из этого материала более чем на месяц помещается в ванну с водой при высоте водного столба не менее 0,5 м, после чего проводят тщательную сушку наружной поверхности, конденсаторным способом измеряют тангенс угла потерь на рабочей частоте и при превышении его величины 210-2 считается, что образец выполнен из диэлектрического материала с квазизакрытой пористостью. 2 ил.

Изобретение относится к радиотехнике, в частности к способам нонтроля радиотехнического качества производимых изолирующих диэлектрических материалов для приземных и подземных антенн метрового и более высоких диапазонов волн при заводском и объектовом производстве различного объема и конфигурации диэлектрических блоков из материалов, считающихся материалами с закрытой пористостью.

Известен способ контроля радиотехнического качества производимых диэлектрических материалов по тангенсу угла потерь /1/, при котором готовится измерительный конденсатор, между металлическими пластинами /обкладками/ которого попеременно вставляются диэлектрические вкладыши, либо из пенопласта, имитирующего воздух, либо из испытуемого диэлектрического материала.

Подключением измерительного конденсатора к измерителю фактора потерь либо измерителю добротности, Q-метру /1/, находится тангенс угла потерь диэлектрика. Затем его величина сравнивается с установленным значением, характеризующим прозрачность диэлектрика в необходимом рабочем диапазоне частот.

Другие аналоги приведены в /2, 3, 4/. Образцы диэлектрического материала могут быть как очень малые, так и в виде больших блоков.

Недостатком способов, включая выбранный в качестве прототипа способа контроля Q-метром /1/, является невозможность по результатам измерений оценить физическую структуру исследуемого материала, т.е. является ли этот материал с полной закрытой пористостью и на него влияние гидрометеоров и окружающей влажной среды /грунта/ не будет оказывать влияния, либо материал лишь выдается разработчиками за материал с закрытой пористостью, т.е. на самом деле диэлектрик является материалом с квази- /якобы/ закрытой пористостью и от него следует ожидать замокания и соответственно радиотехнической непригодности при использовании в специальной антенной технике.

Для устранения указанного недостатка в способе контроля радиотехнического качества производимых диэлектрических материалов образец из диэлектрического материала более чем на месяц помещается в ванну с водой при высоте водяного столба не менее 0,5 м, после чего проводят тщательную просушку наружной поверхности образца и затем проводят измерение конденсаторным способом тангенса угла потерь на рабочей частоте и при превышении его величины 210-2 считается, что образец выполнен из диэлектрического материала с квазизакрытой пористостью, и он отбраковывается.

Заявляемое техническое решение отличается от прототипа тем, что с целью выявления из массива диэлектрических материалов, считающихся материалами с закрытой пористостью, материалов с квази- /якобы/ закрытой пористостью, которые в отличие от материалов с действительно закрытой пористостью впитывают влагу в глубину объема диэлектрического материала, образец диэлектрического материала, им может быть малый образец либо большой блок материала, более чем на месяц помещается в ванну с водой при высоте водяного столба не менее 0,5 м.

После чего проводят тщательную просушку наружной поверхности образца и затем проводят измерение конденсаторным способом тангенса угла потерь на рабочей частоте и при превышении его величины 210-2 считается, что образец выполнен из диэлектрического материала с квазизакрытой пористостью, и он отбраковывается. Тем самым это отличие позволяет осуществлять контроль радиотехнического качества производимых диэлектрических материалов также с учетом физической структуры внутреннего объема материала, предлагаемого как материал с закрытой пористостью.

Такое отличие позволяет сделать вывод о соответствии заявляемых технических решений критерию "новизна". Признаки, отличающие заявляемое Техническое решение от прототипа, не выявлены в других технических решениях при изучении данной и смежной областей техники, следовательно, обеспечивают заявляемым техническим решениям соответствие критерию "существенные отличия." Осуществление заявляемого способа поясняется с помощью устройства, представленного на чертеже.

Устройство /фиг. 1/ содержит измерительный конденсатор с пластинами, называемых также обкладками 1, вырезанными по размеру диэлектрика и располагающимися снизу и сверху от него, посредством симметричных соединительных проводов 2, подключаемых через переключатель 3 к входным клеммам измерителя добротности 4 либо измерителя фактора потерь. В измерительный конденсатор попеременно вставляются одинаковые по размерам то пенопласт 5, как эквивалент воздуха, то испытуемый диэлектрик 6, не находившийся в воде, то испытуемый диэлектрик, побывавший месяц в воде 5, с тщательно просушенной от влаги наружной поверхностью. Такое подключение на фиг.1 показано посредством переключателя 3.

Для каждой из рабочих частот измеряется тангенс угла потерь /tg/ диэлектрика до его помещения в воду и после месячного пребывания диэлектрика в воде. Превышение тангенса угла потерь величины, принятой за предельно допустимую, позволяет принять решение, что пористость внутри материала не закрыта, т. е. в действительности материал с квазизакрытой пористостью и для радиотехнического применения в условиях воздействия гидрометеоров он не пригоден.

Фиг. 2 иллюстрирует результат исследований на частоте 20 МГц изменение тангенса угла потерь во времени пребывания в воде для семи материалов, считавшихся материалами с закрытой пористостью. Критическое значение тангенса угла потерь принималось 210-2. Если значение tg для ситалла 106-П-С /кривая 1/, для пенокерамики ВКП-4 /кривая 2/, ситалла 7-1V-23 /кривая 3/ достаточно стабильно и далеко от критического значения, что свидетельствует, что эти материалы действительно являются материалами с закрытой пористостью, то для других материалов, таких как прессованный ситалл КМ-4 /кривая 4/ пеносилл /кривая 5/, каменное литье /кривая 6/, пеноситалл /кривая 7/, просматривается резкое нарастание тангенса угла потерь с возрастанием времени пребывания в воде, в результате чего тангенс угла потерь превышает критическое значение 210-2. Тем самым такие материалы, не как прессованные ситалл, пеносилл, каменное литье, пеноситалл, должны быть отнесены к материалам с закрытой пористостью.

Источники информации 1. Измеритель добротности /Q-метр/ Е9-4. Техническое описание и инструкция по эксплуатации. Приборостроительный завод Великие Луки. 1967 год.

2. RU 2003992 C1, 30.11.1993 г.

3. RU 94023229 A1, 20.01.1996 г.

4. US 4104585 А, 01.08.1978 г.

Формула изобретения

Способ контроля радиотехнического качества производимых диэлектрических материалов с квази (якобы) закрытой и закрытой пористостью, включающий определение конденсаторным способом тангенса угла потерь на рабочей частоте, который характеризует наличие в диэлектрическом материале влаги или других создающих потери высокочастотной энергии составляющих, и при превышении величины тангенса угла потерь на рабочей частоте установленного критического значения для данных диэлектрических материалов - их отбраковку, отличающийся тем, что образец из диэлектрического материала более чем на месяц помещается в ванну с водой при высоте водяного столба не менее 0,5 м, после чего проводят тщательную просушку наружной поверхности образца, затем проводят измерение конденсаторным способом тангенса угла потерь на рабочей частоте и при превышении его величины 210-2 считается, что образец выполнен из диэлектрического материала с квазизакрытой пористостью, и он отбраковывается.

РИСУНКИ

Рисунок 1, Рисунок 2



 

Похожие патенты:

Изобретение относится к области измерительной техники, а именно к измерениям параметров электрических цепей и измерениям индуктивности катушек

Изобретение относится к измерительной технике, в частности к устройствам для определения диэлектрической проницаемости и толщины слоя жидкости и твердых образцов на поверхности металла

Изобретение относится к области измерительной техники, в частности к устройствам для измерения влажности жидких нефтепродуктов

Изобретение относится к технике измерений на СВЧ и может использоваться для неразрушающего локального определения диэлектрической проницаемости () и тангенса угла потерь диэлектрических материалов для микроэлектроники

Изобретение относится к радиотехнике, в частности к способам контроля радиотехнического качества производимых изолирующих диэлектрических материалов для подземных антенн декаметрового и метрового диапазона волн, рассчитанных на работу в зонах повышенной сейсмической активности, при заводском производстве крупных диэлектрических блоков

Изобретение относится к области контрольно-измерительной техники, в частности к преобразующим устройствам емкостных датчиков съема информации

Изобретение относится к электротехнической промышленности и может быть использовано при измерении электрического сопротивления и площади контакта малых сферических металлических частиц

Изобретение относится к электротехнической промышленности и может быть использовано при измерении электросопротивления и площади контакта малых сферических металлических частиц

Изобретение относится к измерительной технике, в частности к способам определения параметров двухполюсников, и может быть использовано при измерении различных физических величин с помощью емкостных или индуктивных датчиков, схемы замещения которых рассматривают в виде двухполюсников

Изобретение относится к области электрических измерений, в частности к измерению емкости

Изобретение относится к дистанционным способам определения действительной части диэлектрической проницаемости объекта исследования и может быть использовано для определения действительной части диэлектрической проницаемости пленки нефти, разлитой на водной поверхности

Изобретение относится к области измерительной техники на СВЧ

Изобретение относится к измерительной технике и может быть использовано в средствах для измерения электрической емкости и/или активного сопротивления преобразователей неэлектрических величин, а также в устройствах автоматики для контроля указанных величин

Изобретение относится к измерительной технике и может быть использовано в средствах для измерения неэлектрических величин конденсаторными датчиками, емкость которых изменяется в зависимости от измеряемой величины по нелинейным законам

Изобретение относится к электроизмерительной технике и может быть использовано при измерении тангенса угла диэлектрических потерь твердых и жидких диэлектрических материалов, например трансформаторного масла

Изобретение относится к измерительной технике сверхвысоких частот

Изобретение относится к области измерения диэлектрических величин радиопоглощающих композиционных материалов, обладающих большими значениями относительной диэлектрической проницаемости и тангенса угла диэлектрических потерь, и предназначено для использования в радиотехнике СВЧ, при проектировании антенн СВЧ, защитных укрытий и экранов радиотехнических систем

Изобретение относится к электрическим измерениям, в частности к измерению параметров конденсаторов, и может быть использовано при построении высокопроизводительных автоматических устройств для контроля и сортировки радиодеталей, например конденсаторов или катушек индуктивностей по электрическим параметрам в условиях их массового производства

Изобретение относится к измерительной технике и может быть использовано в средствах для счета событий кратковременно изменяющих емкость конденсаторного датчика
Наверх