Способ переработки технециевых растворов

 

Изобретение относится к переработке жидких радиоактивных отходов, образующихся при регенерации облученного ядерного топлива. Сущность изобретения: исходный азотнокислый раствор технеция нейтрализуют до рН 5-11 карбонатным раствором и/или раствором щелочи с одновременным разбавлением до концентрации нитрат-иона 1,5 моль/л и менее. Затем вводят раствор гидразина до концентрации на конец осаждения от 0,001 до 0,05 моль/л или раствор железа (II) при мольном соотношении Тс:Fe1:7 на конец осаждения и отстаивают раствор. После отстаивания, декантации и фильтрации осадок и раствор посылают на дальнейшую переработку. Преимущества изобретения заключаются в повышении извлечения из растворов технеция, в обеспечении извлечения трансурановых элементов и в получении кондиционных по рН фильтратов, подлежащих дальнейшему обращению. 1 з.п. ф-лы, 4 табл., 2 ил.

Изобретение относится к переработке сбросных растворов технеция, образующихся при регенерации облученного ядерного топлива, и может быть использовано в радиохимической промышленности для извлечения технеция из азотнокислого рафината аффинажного передела трансурановых элементов.

Известен способ извлечения технеция методом экстракции органическими растворителями /1/.

Недостатками этого способа являются образование вторичных органических и водных отходов и высокая себестоимость.

Известен способ извлечения технеция методом сорбции различными ионнобменниками /1/.

Недостатками этого способа являются сложности при подготовке исходных растворов и образование вторичных отходов (отработанный сорбент).

Известен способ извлечения технеция из высокоактивного рафината методом соосаждения восстановленных форм технеция на гидрооксидах железа /2/, выбранный в качестве прототипа и включающий следующие стадии: - в раствор добавляют гидразин, чтобы его концентрация в растворе составляла 0,1 моль/л, - технеций соосаждают с гидрооксидами железа при рН 2-3, при этом в осадок переходит 90% технеция, - отделение осадка.

Недостатком данного способа являются невозможность извлечения технеция из высокозасоленных растворов (например, при содержании нитрат-иона 0,5-1,5 моль/л), неполное извлечение технеция и невозможность извлечения ТУЭ.

Техническая задача, на решение которой направлено заявляемое изобретение, состоит в создании такого способа извлечения технеция из сбросных растворов, который позволяет: - повысить извлекаемость технеция при наличии нитрат-иона в исходном растворе, - обеспечить извлекаемость ТУЭ, - обеспечить кондиционность по рН получаемого фильтрата, подлежащего дальнейшему обращению.

Решение поставленной задачи достигается тем, что исходный технециевый раствор нейтрализуют до рН 5-11 раствором карбоната натрия и/или раствором щелочи с одновременным разбавлением до концентрации нитрат-иона 1,5 моль/л и менее, проводят за одну-две операции при рН 5-11 соосаждение технеция и ТУЭ на гидроксидах железа, добавляя гидразин до концентрации на конец осаждения от 0,001 до 0,05 моль/л или раствор железа (II) при мольном соотношении Tc: Fe(II)1:7 на конец осаждения, что позволяет: - обеспечить извлекаемость технеция на 98-99,9%, - обеспечить извлекаемость ТУЭ, - получить кондиционные по рН фильтраты для дальнейшего обращения.

Поставленная задача осуществляется по следующей схеме:
- исходный азотнокислый раствор технеция нейтрализуют до рН 5-11 карбонатным раствором и/или раствором щелочи с одновременным разбавлением до концентрации нитрат-иона 1,5 моль/л и менее,
- вводят раствор гидразина до концентрации гидразина на конец осаждения от 0,001 до 0,05 моль/л или раствор железа (II) при мольном соотношении Tc: Fe(II)1:7 на конец осаждения и отстаивают раствор,
- повторно вводят (при необходимости) раствор гидразина или раствор железа (II) и отстаивают раствор.

После отстаивания, декантации и фильтрации осадок и раствор посылают на дальнейшую переработку.

Примеры осуществления способа.

В мерный цилиндр помещают исходный технециевый раствор, нейтрализующий раствор (он же является разбавляющим раствором) и раствор восстановителя (гидразина или железа (II)). Порядок введения исходного технециевого и нейтрализующего растворов любой: методом прямой нейтрализации, когда щелочной раствор подают в кислоту, и методом обратной нейтрализации, когда кислоту подают в щелочь. Порядок введения раствора гидразина также любой: до смешения исходного и нейтрализующего раствора или после. Порядок введения раствора железа (II) строго определен: после проведения процесса нейтрализации до рН 5-6 вводили железо (II) с последующей доводкой до требуемого значения рН (для исключения преждевременного окисления железа (II), т.е. для снижения его расхода). Затем растворы выдерживают с отбором проб фильтрата на содержание технеция, восстановителя и ТУЭ. Опыты проводили при температуре окружающей среды 25-30oС; стабилизацию температуры в ходе процесса нейтрализации и последующего отстаивания не проводили.

Рафинат аффинажного передела трансурановых элементов содержит приблизительно 3 моль/л азотной кислоты, 5 г/л железа (III), технециевую кислоту, ТУЭ и другие составляющие (сульфат-ион, диэтилентриаминпентауксусная и ацетогидроксамовая кислота, продукты разрушения гидразина и т.д.). Поскольку в ходе предварительных исследований было получено, что другие составляющие не оказывают заметного влияния на проведение процесса осаждения в заявляемых условиях, то работу проводили с исходным технециевым раствором, содержащим 3 моль/л азотной кислоты, 5 г/л железа (III) и 200 мг/л технеция. При изучении поведения ТУЭ, исходный технециевый раствор еще содержал по 2 мг/л нептуния и плутония. В качестве нейтрализующих (разбавляющих) растворов использовали растворы карбоната натрия и/или гидроксида натрия с концентрацией, обеспечивающей заданные значение рН и концентрацию нитрат-ионов на конец осаждения. (При необходимости получения рН 6-11 в опытах с использованием карбоната натрия нейтрализацию до рН 5-6 осуществляли раствором карбоната натрия, а доводку до рН 6-11 - раствором щелочи). В качестве растворов гидразина использовали концентрированные растворы гидразиннитрата и гидразингидрата. В качестве растворов железа (II) использовали концентрированные растворы стабилизированного гидразином железа (II), сульфамата железа (II) и соли Мора.

Пример 1. Необходимость нейтрализации исходного технециевого раствора до рН 5-11 с одновременным разбавлением до концентрации нитрат-иона 1,5 моль/л и менее определяют следующим образом.

Одновременность операций разбавления и нейтрализации обусловлена тем, что в этом случае получается меньший объем разбавленного и нейтрализованного раствора, чем в случае проведения этих операций раздельно, например, сначала - разбавление водой, а затем - нейтрализация щелочью.

В мерные цилиндры помещают исходный технециевый раствор, раствор карбоната натрия и раствор гидразиннитрата с получением различных значений рН и содержания нитрат-иона на конец осаждения; проводят операции соосаждения и отстаивания. Результаты опытов приведены на фиг.1 и 2.

По результатам фиг.1 при проведении процесса соосаждения при рН 3 и концентрации нитрат-иона 0,6 моль/л степень извлечения технеция не превышает 20%. Поэтому нейтрализацию раствора необходимо проводить до значения рН 5 и выше. Верхняя граница рН обусловлена требованиями к дальнейшему обращению с фильтратом: рН не должен превышать 11. По результатам фиг.2 концентрация нитрат-иона в растворе на конец осаждения не должна превышать 1,5 моль/л.

После проведения операций нейтрализации и разбавления раствором карбоната натрия операции повторили с использованием раствора гидроксида натрия. Получили зависимости влияния концентрации нитрата натрия и рН на степень извлечения технеция, аналогичные фиг.1 и 2.

Таким образом, процесс соосаждения технеция на гидроксидах железа необходимо проводить после нейтрализации исходного технециевого раствора до рН 5-11 с одновременным разбавлением до концентрации нитрат-иона 1,5 моль/л и менее.

Пример 2. Концентрацию восстановителя для соосаждения технеция определяют следующим образом.

В мерные цилиндры помещают исходный технециевый и нейтрализующий растворы до концентрации нитрат-иона 0,6 моль/л и значения рН=8 на конец осаждения, вводят растворы восстановителя с разной концентрацией и проводят операции соосаждения и отстаивания. Результаты опытов приведены в табл.1 и 2.

За одну операцию соосаждения извлекается 95-98% технеция при концентрации гидразина (в виде гидразиннитрата или гидразингидрата) в растворе от 0,001 до 0,05 моль/л. Использовать концентрацию гидразина 0,1 моль/л и более нецелесобразно из-за увеличения расхода гидразина, тем более, что при высоких концентрациях гидразина степень извлечения технеция заметно снижается.

За одну операцию соосаждения извлекается 95-99% технеция при использовании растворов железа (II) при соотношении Fe(II):Tc, равном 1:7 и более.

При необходимости более глубокой очистки раствора от технеция необходимо проводить вторую операцию доосаждения. Для отдельных опытов табл.1 и 2 провели повторное доосаждение технеция при введении новых порций восстановителя в фильтрат от операции первого осаждения. Результаты приведены в табл. 3. За две операции соосаждения технеция при использовании различных восстановителей извлекается от 98 до 99,97% технеция.

Таким образом концентрация восстановителя для соосаждения технеция при использовании гидразина должна находиться в диапазоне от 0,001 до 0,05 моль/л, а при использовании раствора железа (II) мольное соотношение Tc:Fe(II) должно составлять 1:7 и более.

Пример 3. Возможность соосаждения ТУЭ совместно с технецием определяли следующим образом.

В мерные цилиндры помещают исходный технециевый раствор с добавкой ТУЭ и раствор карбоната натрия до концентрации нитрат-иона 0,6 моль/л и различных значений pH на конец осаждения, вводят растворы восстановителя и проводят операции соосаждения и отстаивания. Результаты опытов приведены в табл.4.

При использовании различных восстановителей при pH 5-11 ТУЭ соосаждаются на 50-95% в отличие 5-10% при pH 2.

Таким образом, в заявляемых условиях соосаждаются и ТУЭ, находящиеся в растворе.

ЛИТЕРАТУРА
1. Химия долгоживущих осколочных элементов. /Под ред. А.В. Николаева. - М.: Атомиздат, 1970, - с.288-290.

2. Спицын В.И., Кузина А.Ф. Технеций. - М.: Наука, 19881, - с.21.


Формула изобретения

1. Способ переработки технециевых растворов, включающий введение восстановителя, соосаждение технеция на гидроксидах железа и отделение осадка, отличающийся тем, что технециевый раствор нейтрализуют до рН 5-11 раствором карбоната натрия и/или раствором щелочи с одновременным разбавлением до концентрации нитрат-иона 1,5 моль/л и менее, а соосаждение проводят при концентрации восстановителя гидразина от 0,001 до 0,05 моль/л.

2. Способ по п.1, отличающийся тем, что соосаждение проводят при использовании в качестве восстановителя раствора железа (II) при мольном соотношении Тс:Fe (II), равном 1:7 и более.

РИСУНКИ

Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4, Рисунок 5, Рисунок 6



 

Похожие патенты:
Изобретение относится к способу рекуперации нитрат-ионов, содержащихся в водных стоках ядерной промышленности
Изобретение относится к области химической технологии, конкретно к атомной экологии, и может быть использовано при очистке жидких радиоактивных отходов
Изобретение относится к технологии переработки жидких радиоактивных отходов (ЖРО) методами концентрирования, сорбционной доочистки и цементирования

Изобретение относится к переработке жидких особоопасных отходов, содержащих тяжелые металлы и/или радионуклиды, в частности к отверждению отходов путем их включения в искусственные керамические компаунды, и может быть использовано на радиохимических предприятиях атомной энергетики и оружейно-ядерного комплекса, а также в химических и металлургических отраслях промышленности

Изобретение относится к экстракционной технологии переработки облученного ядерного топлива с использованием в качестве разбавителя трибутилфосфата в разбавителе

Изобретение относится к области радиохимической технологии, в частности к переработке кислых радиоактивных отходов

Изобретение относится к области атомной энергетики и может быть использовано для захоронения щелочных жидкометаллических теплоносителей

Изобретение относится к переработке урансодержащих твердых и/или жидких отходов

Изобретение относится к области радиохимической технологии, а именно к переработке водно-хвостовых азотнокислых растворов, образующихся при регенерации облученного ядерного топлива (ОЯТ) и содержащих технеций
Изобретение относится к области химической технологии и может быть использовано для обезвреживания и дезактивации радиоактивных растворов и сточных вод, содержащих Th-232 и дочерние продукты его распада (Ra-228, Ra-224) в количествах, превышающих установленные НРБ и ОСПРБ, а также РЗЭ, Sc, Fe, Cr, Mn, Al, Ti, Zr, Nb, Ta, Ca, Mg, Na, K и др
Изобретение относится к области утилизации жидких отходов, в частности к способам утилизации жидких азотнокислых отходов, содержащих в своем составе радиоактивные вещества

Изобретение относится к области химической технологии и может быть использовано при очистке и концентрировании токсичных растворов, в том числе радиоактивных высокого уровня активности

Изобретение относится к области переработки жидких радиоактивных отходов
Изобретение относится к области переработки жидких радиоактивных отходов

Изобретение относится к области переработки жидких радиоактивных отходов, в частности, к способам извлечения из них благородных металлов
Изобретение относится к химической технологии, конкретно к технологии неорганических веществ, и может быть использовано для переработки обезвреживания и дезактивации радиоактивных отходов производства, содержащих Th-232 и дочерние продукты его распада (Ra-228, Ra-224), а также РЗЭ, Fe, Cr, Mn, Al, Ti, Zr, Nb, Та, Са, Mg, Na, К и др
Наверх