Способ определения давления в разрядных лампах

 

Изобретение относится к электротехнической промышленности, в частности к производству разрядных ламп. Техническим результатом является расширение диапазона измеряемых давлений, повышение точности и воспроизводимости результатов при определении давления на низких частотах. На центральной части лампы размещают внешние электроды, возбуждают два поперечных разряда между ними, устанавливают токи разрядов, протекающих между этими электродами, увеличивают напряжение до зажигания продольного разряда в промежутке между электродами и определяют давление по графику зависимости напряжения зажигания разряда от давления газа. 2 ил.

Изобретение относится к электротехнической промышленности, в частности к производству разрядных ламп.

Известен спектральный метод определения давления аргона применительно к люминесцентным лампам [1]. Этот метод основан на зависимости соотношения потоков излучения линий ртути положительным столбом разряда с длинами волн 435,8 нм и 546,1 нм при фиксированном токе разряда. Этот метод обладает рядом недостатков. Метод длителен по времени, требует применения спектральной аппаратуры и обладает невысокой точностью измерений ~ 9%.

Частично указанные недостатки устранены в работе [2], в которой предлагается определять давление газа по напряжению зажигания высокочастотного разряда на частоте 40 МГц между двумя электродами, расположенными диаметрально противоположно на поверхности газоразрядной лампы, с помощью градуировочной кривой.

Недостатком известного метода является необходимость применения высокочастотного генератора, требуется согласование ВЧ генератора с нагрузкой, экранировкой окружающего пространства от ВЧ полей, ограниченный диапазон измеряемых давлений.

Известен способ определения давления газа в лампе [3], в котором для расширения диапазона измеряемых давлений газа на рабочие электроды лампы подается высоковольтный импульс, инициирующий зажигание основного высокочастотного разряда между внешними электродами. Давление наполняющего лампу газа определяется по напряжению погасания разряда. Недостатками этого способа является необходимость подачи высоковольтного напряжения на электроды лампы, а также применение сложной измерительной схемы.

Наиболее близким по технической сущности является способ определения давления газа в газоразрядных лампах, основанный на использовании внешних электродов [3]. Он заключается в том, что на центральной части лампы размещаются внешние электроды, расстояние между которыми фиксировано. К ним прикладывается модулированное по амплитуде высокочастотное напряжение и возбуждается разряд. Давление газа определяется по графику зависимости напряжения зажигания разряда от давления.

Недостатками метода являются высокое напряжение зажигания разряда между внешними электродами, утечка высокочастотного тока по поверхности лампы, необходимость модуляции высокочастотного напряжения. Недостатком способа является также то, что он применим для ламп, откаченных до давления 1,3 кПа. При увеличении давления свыше 1,3 кПа возникает неустойчивый контакт шнура высокочастотного разряда с оболочкой лампы.

В приведенных способах определение давления газа осуществляется путем возбуждения продольного разряда между внешними кольцевыми электродами. В таком разряде устранение заряженных частиц происходит не за счет их рекомбинации в объеме лампы, а за счет биполярной диффузии с последующей рекомбинацией на стенках лампы. Радиальное распределение электронов для такой конфигурации разряда неоднородно. Кроме того, на процесс двухполярной диффузии электронов и ионов сильно влияет материал оболочки, состояние ее поверхности, вторичноэмиссионные свойства, а также проводимость диэлектрической оболочки, что ограничивает точность проводимых измерений и воспроизводимость результатов.

Задачей настоящего изобретения является расширение диапазона измеряемых давлений, повышение точности и воспроизводимости результатов при определении давления на низких частотах.

Для достижения указанного технического результата в способе определения давления в разрядных лампах, включающем размещение и фиксирование на центральной части лампы внешних электродов, измерение напряжение пробоя между электродами и определение давления по графику зависимости напряжения пробоя от давления газа, после размещения и фиксирования внешних электродов возбуждают два поперечных разряда между ними, устанавливают токи разрядов, протекающих между электродами, затем увеличивают напряжение до зажигания продольного разряда в промежутке между электродами и по измеренному напряжению пробоя определяют давление газа в лампа.

Сопоставительный анализ предлагаемого технического решения с другими техническими решениями показывает, что предлагаемый способ отличается новой последовательностью операций, имеет новую операцию: возбуждение двух низкочастотных вспомогательных поперечных разрядов между диаметрально противоположными внешними электродами при фиксированной величине тока между ними перед измерением напряжения зажигания продольного разряда.

Следовательно, заявляемое изобретение соответствует критерию "новизна".

На фиг. 1 дана схема устройства, которая реализует предложенный способ, на фиг.2 приведен график зависимости напряжения пробоя между парами внешних электродов от давления наполняющего лампу газа.

Устройство содержит четыре внешних электрода 1, 2 и 3, 4, которые контактируют с поверхностью лампы 5. Для возбуждения вспомогательных поперечных разрядов между электродами 1, 2 и 3, 4 к ним прикладывается напряжение, снимаемое с обмоток 6 и 7 трансформатора 8. Постоянные по величине значения токов вспомогательных разрядов поддерживаются резисторами 9 и 10. Контроль токов осуществляется микроамперметрами 11 и 12.

Измерения проводятся на частоте f переменного напряжения, при которой активная проводимость плазмы п значительно больше проводимости к конденсаторов, образованных двумя внешними электродами. Диапазон частот 200-1000 Гц. Нижний предел определяется необходимостью снижения напряжения зажигания вспомогательного разряда. Верхний предел определяется необходимостью снижения утечек по стеклу и емкостного тока конденсаторов, образованных внешними электродами.

Известно, что в поперечном разряде, в отличие от продольного, доминирующими становятся объемные процессы рекомбинации заряженных частиц в плазме, что обусловливает равномерное распределение концентрации электронов по сечению лампы, что позволяет повысить точность измерений.

Расширение диапазона измеряемых давлений, измерение на низких частотах достигается возбуждением в поперечном сечении лампы вспомогательных разрядов, в результате чего объемный механизм развития разряда превалирует над поверхностным (имеющим место при высоких давлениях), снижается напряжение зажигания разряда и повышается стабильность его величины как при измерении низких, так и высоких давлений.

Предложенный способ испытан на натриевых лампах ДнаТ-400, наполненных ксеноном при давлениях 3,192 кПа (24 мм рт. ст.). В схеме применен повышающий трансформатор 8 с коэффициентами трансформации между обмотками 6, 7 и 13, равным 20, и обмоткой 14 и 13, равным 40. К трансформатору 8 прикладывалось переменное напряжение частотой 800 Гц от генератора низкочастотных колебаний 15.

Способ определения давления в газоразрядных лампах осуществляется следующим образом.

1. Размещаем и фиксируем внешние электроды 1, 2, 3, 4, изготовленные из никелевой фольги, с размерами 46 мм на поверхности лампы 5. Электроды 1 и 2, а также 3 и 4 расположены диаметрально противоположно на поверхности лампы. Пары внешних электродов 1, 2 и 3, 4 расположены вдоль ее оси на расстоянии 3 см друг от друга.

2. Прикладываем к трансформатору 8 напряжение, снимаемое с генератора 15, и возбуждаем разряд между внешними электродами 1, 2, и 3, 4.

3. С помощью резисторов 9 и 10 устанавливаем токи разрядов, протекающие между электродами 1, 2 и 3, 4, равными 1,2 мкА.

4. Резистором 16 плавно увеличиваем напряжение между парами электродов 1, 2 и 3, 4, до зажигания разряда в промежутке между ними. Зажигание разряда регистрируется по возникновению тока в цепи микроамперметром 17.

5. Из графика на фиг.2 по измеренному напряжению пробоя определяем давление газа в лампе.

Способ позволяет упростить измерительную схему, методику измерений и сделать ее доступной для контроля давления в заводских условиях. Погрешность измерения давления не превышает 3%.

Источники информации 1. Алукаев Б. Х. , Дадонов В.Ф., Федоренко Ф.С. К определению давления инертного газа в люминесцентных лампах спектральным методом // Светотехника. 1973. 5. С. 4-5.

2. Свешников В. К. Способ определения давления газа в газоразрядных трубах. // Электронная техника. Сер. 4.: Электровакуумные и газоразрядные приборы. 1980. Вып. 5. С. 48-49.

3. Андреев Ю.П. и др. Физико-технические методы неразрушающего контроля ГРИ высокоинтенсивного оптического излучения // Электронная техника. Сер. 4. : Электровакуумные и газоразрядные приборы. 1990. Вып. 4. С. 35. (Прототип).

Формула изобретения

Способ определения давления в разрядных лампах, включающий размещение и фиксирование на центральной части лампы внешних электродов, измерение напряжения пробоя между электродами и определение давления по графику зависимости напряжения пробоя от давления газа, отличающийся тем, что после размещения и фиксирования внешних электродов возбуждают два поперечных разряда между ними, устанавливают токи разрядов, протекающих между электродами, затем увеличивают напряжение до зажигания продольного разряда в промежутке между электродами и по измеренному напряжению пробоя определяют давление газа в лампе.

РИСУНКИ

Рисунок 1, Рисунок 2



 

Похожие патенты:

Изобретение относится к электронной технике и может быть использовано при производстве вакуумных люминесцентных индикаторов (ВЛИ) и люминесцентных материалов

Изобретение относится к области квантовой электроники, в частности к газоразрядным лазерам

Изобретение относится к микроэлектронике, измерительной технике, может быть использовано при производстве, проектировании электролюминесцентных индикаторов (ЭЛИ), а также их научных исследованиях

Изобретение относится к контролю характеристик электровакуумных приборов и может быть использовано при разработках и производстве вакуумных катодолюминесцентных индикаторов и люминофоров

Изобретение относится к испытаниям электровакуумных приборов, в частности к электрическим испытаниям высоковольтных мощных титронов в импульсных квазидинамических режимах, и может найти применение при разработке и производстве мощных электровакуумных приборов

Изобретение относится к электротехнике и может быть использовано в процессе ресурсных испытаний газоразрядных ламп (ГЛ) при их производстве и эксплуатации

Изобретение относится к электронной технике, в частности к изготовлению вакуумных электронных приборов с доступным для визуального наблюдения оксидным катодом, и может быть использовано для определения эмиссионной активности последнего

Изобретение относится к вакуумной электронике и электровакуумному производству и может быть использовано как средство контроля и улучшения качества катодов выпускаемых изделий с целью раннего обнаружения эмиссионных браков, прогнозирования долговечности и снижения рекламационного возврата

Изобретение относится к области электротехники, а именно к устройствам для испытания электровакуумных приборов

Изобретение относится к области электронной техники и приборостроения, в частности к способам контроля термоэмиссионного состояния поверхностно-ионизационных термоэмиттеров ионов органических соединений, используемых для селективной ионизации молекул органических соединений в условиях атмосферы воздуха в газоанализаторах типа хроматографов и дрейф-спектрометров

Изобретение относится к области проведения испытаний приборов и может быть использовано при изготовлении мощных генераторных ламп

Изобретение относится к электронной технике, а именно к способам определения расстояния между электродами электровакуумных приборов (ЭВП)

Изобретение относится к электротехнике и может быть использовано при испытаниях и контроле качества люминесцентных ламп

Изобретение относится к способам измерения низких давлений газа в газоразрядных камерах, в которых образуется плазменный фокус (ПФ) - нецилиндрический Z-пинч, токовая оболочка которого имеет форму типа воронки, и может быть использовано в таких областях, как мощная импульсная электрофизика, физика плазмы, где необходимы измерения давления рабочего газа в газоразрядных камерах плазменного фокуса в диапазоне 1-50 мм рт.ст. Технический результат - возможность измерения давления как радиоактивного, так и нерадиоактивного рабочего газа в отпаянной камере ПФ. В способе измерения давления газа в запаянных разрядных камерах плазменного фокуса на электроды разрядной камеры плазменного фокуса подают высокое напряжение, измеряют контролируемый параметр камеры плазменного фокуса, а давление газа определяют, используя градуировочный график зависимости давления от контролируемого параметра для данного типа разрядной камеры плазменного фокуса, высокое напряжение подают с емкостного накопителя, на осциллограмме разрядного тока, протекающего через разрядную камеру плазменного фокуса, в качестве контролируемого параметра измеряют интервал времени от момента начала роста тока до его резкого падения - время особенности, и по полученному значению интервала времени, используя градуировочный график зависимости давления газа от времени особенности при подаваемом напряжении для данного типа разрядной камеры плазменного фокуса, определяют давление газа. 4 ил.

Изобретение относится к индикаторной технике и может быть использовано при исследовании характеристик газоразрядных индикаторов и разработке схем управления для них. Способ оценки параметров распределения времени запаздывания возникновения разряда газоразрядных индикаторов заключается в циклическом формировании на электродах газоразрядного индикатора стимулирующих сигналов N раз в течение времени Т в каждом цикле и измерении времени запаздывания возникновения разряда ti. Для повышения достоверности исследований после окончания формирования стимулирующих сигналов в каждом цикле регистрируют число незажиганий исследуемого элемента отображения - n. Оценку среднего времени запаздывания возникновения разряда вычисляют по формуле . Устройство для оценки параметров распределения времени запаздывания возникновения разряда содержит блок стимулирующих сигналов, блоки коммутации шин «У» и «X», газоразрядный индикатор, который оптически связан с анализатором состояния элементов отображения, RS-триггер. С целью повышения достоверности исследований, в устройство введены блок синхронизации, измеритель временных интервалов, блок обработки и выдачи результатов, реализующий формулу . Технический результат - повышение достоверности определения статистических параметров распределений при различном числе зажиганий исследуемого элемента отображения. 2 н.п. ф-лы, 2 ил.
Наверх