Способ разделения изотопов водорода

 

Изобретение относится к области разделения изотопов водорода. Разделение изотопов водорода проводят в четырех насадочных колоннах криогенной ректификации и четырех блоках гомомолекулярного изотопного обмена. Переработке подвергают два сырьевых потока, первый из которых содержит от 0,80 до 0,99 ат. долей протия и от 0,01 до 0,20 ат. долей трития, а второй сырьевой поток содержит от 0,01 до 0,03 ат. долей протия, от 0,64 до 0,72 ат. долей дейтерия и от 0,25 до 0,35 ат. долей трития. В качестве продуктов получают протий с изотопной чистотой 0,99999 ат. долей, дейтерий с изотопной чистотой 0,9999 ат. долей и тритий с изотопной чистотой 0,9999 ат. долей. 1 ил., 1 табл.

Изобретение относится к технологии разделения изотопов водорода.

Известен способ разделения изотопов водорода (Японский патент 61107926, кл. В 01 D 59/04, 1986 г.) в установке, состоящей из двух колонн криогенной ректификации и двух блоков гомомолекулярного изотопного обмена.

Недостатком данного способа является то, что концентрация протия в исходного сырье не может превышать 0,03 ат. доли.

Известен способ разделения изотопов водорода (пат. США 4353871, кл. 422/159, 1982 г.), принятый за прототип, в установке, состоящей из четырех колонн криогенной ректификации и двух блоков гомомолекулярного изотопного обмена.

Недостатками прототипа является то, что в качестве сырья может использоваться только эквимолярная дейтерий-тритиевая смесь с содержанием протия порядка 0,01 ат. доли; в качестве продуктов получаются HD (побочный продукт), D2, DT и Т2; для превращения НТ в HD и DT вводится вспомогательный поток D2.

Задачей изобретения является получение чистых протия (Н2), дейтерия (D2) и трития (Т2) и устранение недостатков, присущих прототипу.

Поставленная задача решается способом разделения изотопов водорода, включающим криогенную ректификацию в четырех насадочных колоннах и разложение молекул HD, НТ и DT в блоках гомомолекулярного изотопного обмена, причем переработке подвергают два сырьевых потока, первый из которых содержит от 0,80 до 0,99 ат. долей протия и от 0,01 до 0,20 ат. долей трития, а второй сырьевой поток содержит от 0,01 до 0,03 ат. долей протия, от 0,64 до 0,72 ат. долей дейтерия и от 0,25 до 0,35 ат. долей трития. Причем первый сырьевой поток смешивают с потоком, выходящим из дефлегматора второй колонны криогенной ректификации. Смесь пропускают через первый блок гомомолекулярного обмена и подают в качестве питания в первую колонну криогенной ректификации, а второй сырьевой поток смешивают с потоком, выходящим из куба первой колонны криогенной ректификации и далее через второй блок гомомолекулярного изотопного обмена подают на разделение во вторую колонну криогенной ректификации. Кубовый остаток из второй колонны криогенной ректификации смешивают с потоком, поступающим из дефлегматора четвертой колонны криогенной ректификации через четвертый блок гомомолекулярного изотопного обмена, и подают на разделение в третью колонну криогенной ректификации. Поток из куба третьей колонны криогенной ректификации смешивают с потоком, отбираемым из четвертой колонны криогенной ректификации. Далее смесь пропускают через третий блок гомомолекулярного изотопного обмена и направляют на разделение в четвертую колонну криогенной ректификации. В качестве продуктов получают три потока, причем первый поток с содержанием 0,99999 ат. долей протия отбирают из дефлегматора первой колонны криогенной ректификации, второй поток с содержанием 0,9999 ат. долей дейтерия отбирают из дефлегматора третьей колонны криогенной ректификации, третий поток содержанием 0,9999 ат. долей трития отбирается из куба четвертой колонны криогенной ректификации.

Такая совокупность признаков в литературе неизвестна.

Установка для разделения изотопов водорода состоит из четырех колонн криогенной ректификации и четырех блоков гомомолекулярного изотопного обмена (чертеж). На разделение подают два сырьевых потока. Первый сырьевой поток, содержащий от 0,80 до 0,99 ат. долей протия и от 0,01 до 0,20 ат. долей трития, смешивают с потоком, выходящим из дефлегматора колонны криогенной ректификации 2. Далее смесь через блок гомомолекулярного изотопного обмена 5 подают на разделение в колонну криогенной ректификации 1. Продукт, выходящий из дефлегматора колонны криогенной ректификации 1, представляет собой протий с концентрацией 0,99999 ат. долей. Поток из куба колонны криогенной ректификации 1 смешивают со вторым сырьевым потоком, содержащим от 1 до 3 ат. долей протия, от 64 до 72 ат. долей дейтерия и от 25 до 35 ат. долей трития, и далее через блок гомомолекулярного изотопного обмена 6 направляют на разделение в колонну криогенной ректификации 2. Кубовый остаток из колонны криогенной ректификации 2 смешивают с потоком, поступающим из дефлегматора колонны криогенной ректификации 4 через блок гомомолекулярного изотопного обмена 7, и подают на разделение в колонну криогенной ректификации 3. Из дефлегматора колонны криогенной ректификации 3 отбирают дейтерий с концентрацией 0,9999 ат. долей. Поток из куба колонны криогенной ректификации 3 смешивают с потоком, отбираемым из колонны криогенной ректификации 4, и подают в блок гомомолекулярного изотопного обмена 8, после чего направляют на разделение в колонну криогенной ректификации 4. Из куба колонны криогенной ректификации 4 отбирают тритий с концентрацией 0,9999 ат. долей.

Исходные сырьевые потоки являются шестикомпонентными смесями, в то время как продуктами являются чистые три компонента. Разложение HD, НТ и DT производится в блоках гомомолекулярного изотопного обмена при температуре 300К. Характеристики колонн криогенной ректификации приведены в таблице.

Потоки подаются на разделение в колонны в виде жидкостей, нагретых до температуры кипения. Отбор из дефлегматора и куба колонн криогенной ректификации производится в виде жидкостей. С 20-й теоретической ступени разделения колонны криогенной ректификации 4 смесь отбирается в виде пара.

Формула изобретения

Способ разделения изотопов водорода, включающий криогенную ректификацию в четырех насадочных колоннах и разложение молекул HD, НТ и DT в блоках гомомолекулярного изотопного обмена, отличающийся тем, что используют четыре блока гомомолекулярного изотопного обмена, причем переработке подвергают два сырьевых потока, первый из которых содержит от 0,80 до 0,99 ат. долей протия и от 0,01 до 0,20 ат. долей трития, а второй сырьевой поток содержит от 0,01 до 0,03 ат. долей протия, от 0,64 до 0,72 ат. долей дейтерия и от 0,25 до 0,35 ат. долей трития, причем первый сырьевой поток смешивают с потоком, выходящим из дефлегматора второй колонны криогенной ректификации, смесь пропускают через первый блок гомомолекулярного обмена и подают в качестве питания в первую колонну криогенной ректификации, а второй сырьевой поток смешивают с потоком, выходящим из куба первой колонны криогенной ректификации и далее через второй блок гомомолекулярного изотопного обмена подают на разделение во вторую колонну криогенной ректификации, кубовый остаток из второй колонны криогенной ректификации смешивают с потоком, поступающим из дефлегматора четвертой колонны криогенной ректификации через четвертый блок гомомолекулярного изотопного обмена, и подают на разделение в третью колонну криогенной ректификации, поток из куба третьей колонны криогенной ректификации смешивают с потоком, отбираемым из четвертой колонны криогенной ректификации, далее смесь пропускают через третий блок гомомолекулярного изотопного обмена и направляют на разделение в четвертую колонну криогенной ректификации, в качестве продуктов получают три потока, причем первый поток с содержанием 0,99999 ат. долей протия отбирают из дефлегматора первой колонны криогенной ректификации, второй поток с содержанием 0,9999 ат. долей дейтерия отбирают из дефлегматора третьей колонны криогенной ректификации, третий поток с содержанием 0,9999 ат. долей трития отбирается из куба четвертой колонны криогенной ректификации.

РИСУНКИ

Рисунок 1, Рисунок 2



 

Похожие патенты:

Изобретение относится к области очистки и разделения смесей изотопов и изотопных соединений, имеющих малое значение коэффициента разделения

Изобретение относится к атомной, медицинской, сельскохозяйственной и другим отраслям промышленности и может быть использовано при производстве стабильных изотопов азота и кислорода

Изобретение относится к устройствам разделения изотопов с низким коэффициентом разделения, в частности для разделения изотопов бора ректификацией хлористого бора

Изобретение относится к криогенной технике и может быть использовано, в частности, для получения газовых смесей, характеризуемых малым значением коэффициента разделения, например, изотопов неона

Изобретение относится к установке для разделения изотопов методом фракционной перегонки. Установка содержит многоканальную ректификационную колонну 1, выполненную в виде каскада последовательно расположенных в вертикальном направлении модулей 11 с параллельно расположенными трубками 2, образующими рабочие каналы с насадкой 12, верхний буфер 3 и нижний буфер 4, конденсатор 7, испаритель 8 и дозирующее устройство 5 с раздаточными трубками 6, соединенными с рабочими каналами. Перед модулями 11 установлены распределители потока пара 13 с параллельно расположенными проходными трубками 14. На верхней части модулей 11 установлены тарелки 16 с углублениями, образующими входную часть рабочих каналов. Со стороны выходных отверстий рабочих каналов установлены чашеобразные улавливатели 15 каплеобразной фракции рабочего тела, выходные отверстия которых соединены с входными отверстиями проходных трубок 14. Выходные части проходных трубок 14 установлены во входных частях трубок 2 с образованием зазора между внешней поверхностью проходных трубок 14 и внутренней поверхностью рабочих каналов. Выходные части раздаточных трубок 6 расположены со стороны углублений в тарелках 16 с образованием зазора между внешней поверхностью раздаточных трубок 6 и внутренней поверхностью рабочих каналов. Изобретение обеспечивает повышение производительности процесса разделения изотопов. 17 з.п. ф-лы, 6 ил.

Изобретение относится к способу обогащения изотопа кислорода. Способ включает получение кислорода, содержащего первично обогащенный изотоп кислорода, с помощью дистилляции кислородного сырья при использовании первого дистилляционного устройства, получение воды с помощью гидрогенизации кислорода, содержащего первично обогащенный изотоп кислорода, получение оксида азота, отводимого при дистилляции сырья оксида азота, при использовании второго дистилляционного устройства, и получение оксида азота и воды с помощью осуществления реакции химического обмена между водой и отведенным оксидом азота, в результате чего получают оксид азота, имеющий повышенную концентрацию изотопа кислорода, и воду, имеющую пониженную концентрацию изотопа кислорода, причем оксид азота, имеющий повышенную концентрацию изотопа кислорода, подают во второе дистилляционное устройство, а кислород, полученный электролизом воды, имеющей пониженную концентрацию изотопа кислорода, возвращают в первое дистилляционное устройство. Изобретение обеспечивает эффективное обогащение изотопа кислорода. 2 н. и 5 з.п. ф-лы, 2 ил.

Изобретение относится к области производства изотопа кислорода-18 для ПЭТ-томографии и также может быть использовано для производства воды, обогащенной по изотопу кислорода-18. Способ получения воды, обогащенной по кислороду-18, из природной воды методом ректификации воды под вакуумом включает предварительное обогащение воды по кислороду-18 в параллельно работающих по открытой схеме колоннах с отбором первого рода промежуточного концентрата кислорода-18 и конечное обогащение промежуточного концентрата в каскаде колонн, состоящем из концентрирующих по кислороду-18 и исчерпывающих по кислороду-16 колонн. При этом для питания установки используется вода, циркулирующая в колоннах предварительного обогащения, природное содержание кислорода-18 в которой поддерживается путем химического изотопного обмена с углекислым газом, который в свою очередь поддерживает природное содержание кислорода-18 путем химического изотопного обмена с природной водой. Установка для получения воды, обогащенной по кислороду-18, из природной воды включает узел предварительного концентрирования, выполненного в виде параллельно работающих по открытой схеме без исчерпывания с отбором первого рода ректификационных колонн предварительного обогащения, узел конечного концентрирования, выполненного в виде концентрирующих по кислороду-18 колонн и исчерпывающих по кислороду-16 колонн, и узел предварительного концентрирования, расположенный на линии питания и состоящий из колонн химического изотопного обмена в системе вода – углекислый газ. Изобретение обеспечивает получение воды, обогащенной по кислороду-18, с обогащением 95% и нормализованным изотопным составом по дейтерию, с высокой эффективностью и низким уровнем технологических потерь. 2 н.п. ф-лы, 2 ил., 2 табл.
Наверх