Индукционный зонд для определения дефектов обсадной колонны

 

Изобретение относится к промысловой геофизике, а именно к средствам контроля технического состояния обсадных колонн и насосно-компрессорных труб. Техническим результатом является повышение чувствительности индукционного зонда и упрощение конструкции. Для этого устройство включает немагнитный герметичный корпус (1) с цилиндрическим основанием (2), на котором размещены магнитопровод (3) с полюсными торцами (4) и генераторная катушка (5), витки которой расположены коаксиально цилиндрическому основанию (2), а также индикаторные катушки (6), установленные аксиально и равноудаленно относительно цилиндрического основания (2), причем в каждой паре оси индикаторных катушек (6) смещены относительно друг друга, а катушки включены попарно и встречно. Причем магнитопровод (3) выполнен в виде полого цилиндра со сплошными кольцевыми полюсными торцами (4), а толщина стенки цилиндра и высота каждого торца равны между собой и их величину определяют по математической формуле. При этом расстояние между торцами (4) магнитопровода (3) определяют по математической формуле. Индикаторные катушки (6) представляют собой многовитковые рамки без сердечника, имеющие в сечении форму параллелограмма с углом наклона большей его стороны к цилиндрическому основанию (2), рассчитываемому по математической формуле. Причем между торцами (4) магнитопровода (3) по окружности равномерно расположено четное количество индикаторных катушек (6) в два ряда, с соблюдением соосности между последними, вплотную меньшей стороной параллелограмма к торцам (4) магнитопровода (3) и между собой в рядах, а каждая пара индикаторных катушек (6) представлена диаметрально противоположными катушками из разных рядов. 5 ил.

Изобретение относится к промысловой геофизике, в частности к средствам контроля технического состояния обсадных колонн и насосно-компрессорных труб, находящихся в скважине.

Анализ существующего уровня показал следующее: - известен индукционный зонд для определения дефектов обсадных колонн, состоящий из генераторной катушки, в которой расположены П-образные сердечники аксиально и равноудаленно, имеющие полюсные торцы и индикаторные катушки, установленные на них симметрично относительно оси генераторной катушки (см. а.с. 691559 от 17.04.78 г. по кл. Е 21 В 49/00, опубл. в ОБ 38, 1979 г. ). Оси одного ряда индикаторных катушек смещены относительно осей другого ряда на величину, равную радиусу индикаторной катушки.

Недостатком известной конструкции индукционного зонда является пониженная чувствительность и разрешающая способность. Множество сердечников создает неоднородное поле по окружности и низкую концентрацию линий магнитной индукции, взаимодействующих с внутренней поверхностью обсадной колонны, приводящую к невозможности регистрации мелких дефектов или перфорационных отверстий порядка 14-16 мм. Более того, устройство сложно в изготовлении, т.к. необходимо обеспечить изоляцию магнитного поля между соседними П-образными сердечниками; - в качестве прототипа взят индукционный зонд для определения дефектов обсадной колонны, состоящий из немагнитного герметичного корпуса с цилиндрическим основанием, на котором размещен магнитопровод (П-образные магнитные сердечники) с полюсными торцами, на которых установлены аксиально и равноудаленно индикаторные катушки, а также генераторной катушки, витки которой расположены коаксиально цилиндрическому основанию (см. а. с. 1052656 от 24.06.82г. по кл. Е 21 В 49/00, Е 21 В 47/00, опубл. в ОБ 41, 1983г.). В каждой паре оси индикаторных катушек смещены относительно друг друга на величину, равную радиусу индикаторной катушки, а сами катушки включены попарно и встречно. Кроме того, в средней части П-образных сердечников размещены дополнительные катушки, которые включены между собой согласно и последовательно с генераторной катушкой.

Недостатком известной конструкции индукционного зонда является пониженная чувствительность и разрешающая способность. Множество сердечников создает неоднородное поле по окружности и низкую концентрацию линий магнитной индукции, взаимодействующих с внутренней поверхностью обсадной колонны, приводящую к невозможности регистрации мелких дефектов или перфорационных отверстий диаметром порядка 14-16 мм. Дополнительные катушки обеспечивают концентрацию линий магнитной индукции в средней части П-образных магнитных сердечников, но не устраняют замыкания этих линий между соседними полюсными торцами. В результате понижается плотность магнитного потока, взаимодействующего с внутренней поверхностью обсадной колонны. Более того, устройство сложно в изготовлении, так как необходимо обеспечить жесткое крепление П-образных сердечников в местах расположения дополнительных катушек.

Технический результат, который может быть получен при осуществлении предлагаемого изобретения, сводится к следующему: - повышается чувствительность и разрешающая способность индукционного зонда за счет изменения ориентации линий магнитной индукции, часть которых, пересекая контуры многовитковых рамок индикаторных катушек, приводит к большей величине электродвижущей силы (ЭДС), что способствует получению достоверного результата - регистрации мелких дефектов перфорационных отверстий порядка 14-16 мм даже при увеличенном зазоре между стенкой немагнитного герметического корпуса и внутренней стенкой обсадной трубы, достигающем 40 мм, - упрощается конструкция за счет применения единого магнитопровода.

Технический результат достигается с помощью известного устройства для определения дефектов обсадной колонны из немагнитного герметичного корпуса с цилиндрическим основанием, на котором размещен магнитопровод с полюсными торцами и генераторная катушка, витки которой расположены коаксиально цилиндрическому основанию, а также индикаторные катушки, установленные аксиально и равноудаленно относительно цилиндрического основания, причем в каждой паре оси индикаторных катушек смещены относительно друг друга, а катушки включены попарно и встречно, где по заявленному изобретению магнитопровод выполнен в виде полого цилиндра со сплошными кольцевыми полюсными торцами, а толщина стенки цилиндра и высота каждого торца равны между собой и их величину определяют по формуле где h - толщина стенки цилиндра или высота каждого торца магнитопровода, м, - удельное сопротивление магнитопровода, 0мм; 0 - магнитная постоянная, равная 410-7 Гн/м; - относительная магнитная проницаемость магнитопровода;
f - рабочая частота питания генераторной катушки Гц,
при этом расстояние между торцами магнитопровода определяют по формуле
l=2amax,
где l - расстояние между торцами магнитопровода, м;
amax - расстояние между наружной поверхностью торца магнитопровода и внутренней поверхностью обсадной трубы наибольшего диаметра, м,
а индикаторные катушки представляют собой многовитковые рамки без сердечника, имеющие в сечении форму параллелограмма с углом наклона большей его стороны к цилиндрическому основанию, рассчитываемому по следующей формуле

где - угол наклона большей стороны параллелограмма к цилиндрическому основанию, град.;
d - высота намотки индикаторной катушки, м, определяемая по формуле

где D - диаметр провода, м;
N - число витков,
причем между торцами магнитопровода по окружности равномерно расположено четное количество индикаторных катушек в два ряда, с соблюдением соосности между последними, вплотную меньшей стороной параллелограмма к торцам магнитопровода и между собой в рядах, а каждая пара индикаторных катушек представлена диаметрально противоположными катушками из разных рядов.

Анализ изобретательского уровня показал следующее: известно выполнение торцов магнитопровода сплошными и торцевыми, расположение приемных измерительных катушек, имеющих магнитный сердечник между торцами магнитопровода (см. а. с. 1640382 от 24.08.88 г. по кл. Е 21 В 47/00, опубл. в ОБ 13, 1991 г.; а.с. 1263824 от 18.12.84 г. по кл. Е 21 В 47/00, опубл. в ОБ 38, 1986 г. ); известно выполнение индикаторных катушек, намотанных на магнитный сердечник в форме параллелограмма (см. а.с. 871557 от 30.04.80 г. по кл. Е 21 В 47/00, G 01 N 27/82, опубл. в ОБ 11, 1992 г.). Нами не обнаружены источники патентной документации и научно-технической литературы, описывающие конструкцию зонда, представленную в отличительной части формулы изобретения. Таким образом, достигаемый технический результат обусловлен неизвестными свойствами частей рассматриваемого устройства и связями между ними. Техническое решение явным образом не следует из уровня техники, т.е. соответствует условию изобретательского уровня.

Конструкция заявляемого устройства поясняется следующими чертежами:
- на фиг.1 представлен индукционный зонд, продольное сечение;
- на фиг.2 представлена индикаторная катушка, общий вид;
- на фиг.3 представлена развертка части внешней поверхности индукционного зонда;
- на фиг.4 представлен график (нормированные кривые) зависимости ЭДС от расстояния между стенкой колонны и полюсными торцами магнитопровода amах, где пунктирной линией показаны обобщенные характеристики приборов существующего уровня техники (в том числе прототипа), а сплошной линией - статическая характеристика заявляемого индукционного зонда;
- на фиг.5 представлена обобщенная каротажная кривая по восьми каналам, при работе индукционного зонда заявляемой конструкции.

Заявляемое устройство (см. фиг.1) состоит из немагнитного герметичного корпуса 1 с цилиндрическим основанием 2, на котором размещен магнитопровод 3 в виде полого цилиндра со сплошными кольцевыми полюсными торцами 4 и генераторная катушка 5. Витки последней расположены коаксиально цилиндрическому основанию 2. Толщина стенки цилиндра магнитопровода 3 и высота каждого торца 4 равны между собой, а между торцами 4 по окружности равномерно расположено четное количество индикаторных катушек 6, установленных аксиально и равноудаленно относительно цилиндрического основания 2, в два ряда с соблюдением соосности между последними. Индикаторные катушки 6 (см. фиг.2) представляют собой многовитковые рамки без сердечника, имеющие в сечении форму параллелограмма (см. фиг.3) с углом наклона большей стороны параллелограмма к цилиндрическому основанию 2. Индикаторные катушки 6 прилегают вплотную меньшими сторонами параллелограмма к торцам 4 магнитопровода 3 и между собой в рядах. Две диаметрально противоположные индикаторные катушки из разных рядов, оси которых смещены относительно друг друга, представляют пару (см. фиг.1, пара АА и пара ВВ). Индикаторные катушки 6, образующие пару, включены встречно.

Для определения технического состояния обсадной колонны Бойчаровской разведочной скважины 3-П предприятия "Кавказтрансгаз" в интервале 2340-2734 м внутренний диаметр обсадной трубы 157,3 мм=0,1573 м.

С учетом того, что достаточно высокая чувствительность и разрешающая способность сохраняются при величине зазора a1=40 мм, находим внешний диаметр торцов магнитопровода dm:dm =0,1573-(0,04002)=0,0773 м. Принимаем dm= 0,078 м, с учетом того, что amax=a1, расстояние между торцами определится
l=2amax0,040=0,080 м.

Толщина стенки полого цилиндра и высота торцов магнитопровода будет: для стали марки 50Н =0,45 мкOмм=4,510-7Омм, = 2500, (А.А. Преображенский. Теория магнетизма, магнитные материалы и элементы. - М.: - Высшая школа. - 1972.-288 с.)

Габаритная длина магнитопровода L будет равна
L=l+2h=0,080+0,0074=0,0874 м.

В индикаторных катушках используют провод марки ПНЭТ-имид,
D=0,14мм=0,00014м; N=1800 витков;


=8o30'.

Габариты устройства:
Наружный диаметр, мм - 80
Длина, мм - 90
Масса, кг - 0,7
Устройство работает следующим образом.

Индукционный зонд вместе с системой телеметрии ТИС - 16 входит в состав скважинного прибора, который в процессе исследования перемещают в скважине на каротажном кабеле. При спуске на скорости 1000 м/ч проводят обзорное исследование, а при подъеме, для более детального исследования, скорость варьируют в пределах 300-600 м/ч.

Сигналы, снимаемые с индикаторных катушек раздельно по нескольким (в данном случае восьми) каналам, соответствующим секторам исследования, поступают в систему телеметрии ТИС - 16, где смешиваются и преобразуются в частотно-модулированный сигнал. Последний по каротажному кабелю поступает в наземный блок каротажа Б - 41, в котором смешанные сигналы разделяют и передают на ПЭВМ для их визуализации и записи в файл.

По каротажному кабелю производится запитка генераторной катушки переменным током частотой 200 Гц величиной 200 мА.

При пропускании переменного электрического тока через генераторную катушку 5 наибольшая плотность линий магнитной индукции, взаимодействующих со стенкой колонны, будет сосредоточена на кольцевых полюсных торцах 4 магнитопровода 3. В промежутке между торцами 4 и стенкой колонны линии магнитной индукции распределяются следующим образом: часть из них замкнется на внутреннюю поверхность трубы, а другая часть, образующая поле рассеивания, замкнется на цилиндрическую поверхность магнитопровода 3, пересекая при этом контуры индикаторных катушек 6. В зависимости от изменения магнитной проводимости участка трубы, величина которой обусловлена наличием дефекта, его ориентацией, протяженностью, глубиной, если он не сквозной, и другими факторами, будет происходить перераспределение линий магнитной индукции между торцами 4 и стенкой трубы и торцами 4 и цилиндрической поверхностью магнитопровода 3. ЭДС полезного сигнала, наводимого в индикаторных катушках 6, определится плотностью линий магнитной индукции, пересекающих контуры индикаторных катушек 6, но взаимодействие с трубой будет осуществляться в основном на участке цилиндрическая поверхность торца 4-внутренняя поверхность трубы. Выбранная форма магнитопровода 3 в виде полого цилиндра со сплошными кольцевыми полюсными наконечниками позволяет проектировать на внутреннюю стенку обсадной трубы магнитное поле в виде сплошных колец с равномерным радиальным распределением линий магнитной индукции, что способствует увеличению чувствительности и разрешающей способности зонда. А соосное расположение индикаторных катушек 6 обеспечивает максимальное взаимодействие последних с линиями магнитной индукции, обеспечивая при этом повышение чувствительности.

Поскольку генераторная катушка 5 расположена в выемке между торцами 4, а ширина последних много меньше расстояния между ними, то в пределах от внешней цилиндрической поверхности торцов 4 до цилиндрического основания 2 магнитопровод 3 можно рассматривать как магнитный экран, в котором магнитное поле ослабляется, проникая вглубь цилиндра и в направлении высоты торцов. О величине переменного магнитного поля можно судить по плотности вихревых токов, циркулирующих в объемных слоях магнитопровода 3

где Po - плотность тока в глубине металла;
Рпов - плотность тока на поверхности;
h - глубина проникновения магнитного поля;
h0 - показатель уменьшения магнитного поля, определяемый по формуле

Для определения толщины цилиндра и высоты торцов составляют уравнение

и приравнивают
h = h,
получают

Отсюда

При выборе расстояния между торцами магнитопровода 4 руководствуются следующим: расстояние между торцами 4 должно быть как можно меньше, для повышения разрешающей способности, но не настолько меньше, чтобы линии магнитной индукции замыкались между ними. Так как среда между торцами 4 и между цилиндрической поверхностью торцов 4 и внутренней стенкой колонны немагнитная, то магнитная проводимость на этих участках в первом приближении будет пропорциональна расстоянию. Следовательно, оптимальное расстояние между торцами 4, повышающее чувствительность и разрешающую способность индукционного зонда, определится из соотношения
l=2amax.

Ввиду того, что в открытых магнитопроводах величина магнитного поля рассеивания составляет до 90% и более от величины суммарного магнитного поля излучения, индикаторные катушки 6 располагают вплотную к торцам 4 магнитопровода 3 и между собой в рядах. При этом поле рассеивания, которое несет в себе полезную информацию о состоянии колоны, сконцентрировано в основном между торцами 4 и будет взаимодействовать с наибольшей площадью многовитковых рамок индикаторных катушек 6, повышая чувствительность и разрешающую способность даже при значительном зазоре, порядка 40 мм, между стенкой немагнитного герметичного корпуса 1 и внутренней поверхностью обсадной колонны.

Использование индикаторных катушек 6 (см. фиг.2) без сердечника повышает чувствительность индукционного зонда за счет того, что ориентация линий магнитной индукции изменяется в более широких пределах в пространстве между цилиндрическими торцами 4 магнитопровода 3 и по высоте индикаторных катушек 6. Наличие магнитных сердечников обусловило бы наведение ЭДС в приемных катушках 6 не за счет переориентации линий магнитной индукции, а традиционным образом, посредством изменения плотности последних при взаимодействии со стенкой обсадной трубы.

При проведении измерений, как правило, используют пару индикаторных катушек 6 на канал измерений, и для устранения фона, наводимого полем генераторной катушки 5, эти индикаторные катушки в паре включают встречно. ЭДС фона при таком включении взаимно вычитается и на выходе пары индикаторных катушек 6 выделяется полезный сигнал, зависящий от величины магнитной проводимости стенки трубы. Для повышения чувствительности зонда используют четное число диаметрально и противоположно расположенных встречно включенных катушек АА и ВВ (см. фиг.1). Причем катушки в паре располагают вблизи противоположных торцов, в два ряда, что обусловлено наличием двух кольцевых полюсных торцов. Такая диаметрально противоположная ориентация увеличивает чувствительность зонда за счет того, что увеличение плотности линий магнитной индукции, взаимодействующих с обсадной трубой, приводит к уменьшению плотности последних на диаметрально противоположной стороне, что приводит к большему разбалансу ЭДС, наводимой в индикаторных катушках 6. Одновременно такое расположение увеличивает зону исследования трубы в два раза, увеличивая при этом и разрешающую способность зонда.

Использование индикаторных катушек 6 прямоугольной формы привело бы к тому, что в промежутках между внутренними контурами последних по периметру внутренней поверхности обсадной трубы наблюдалось бы пропадание чувствительности зонда. Для того, чтобы это исключить, индикаторные катушки 6 выполняют так, чтобы в сечении они имели форму параллелограмма (см. фиг.3), причем меньшая сторона должна прилегать к полюсному торцу 4, позволяя задействовать наибольшее количество каналов измерения и оценивать величину дефекта по ширине, увеличивая при этом разрешающую способность зонда. Ввиду того, что две индикаторные катушки 6 в паре являются активными, угол наклона большей стороны к оси зонда удалось максимально уменьшить, увеличив при этом площади внутренних контуров, а следовательно, и чувствительность.

Анализируя график, представленный на фиг.4, делаем вывод о том, что на расстоянии индукционного зонда от внутренней стенки обсадной трубы порядка 40 мм крутизна кривой статической характеристики заявляемого индукционного зонда намного больше крутизны кривых, характеризующих аналогичные параметры известных зондов.

Анализируя график, представленный на фиг.5, делаем вывод о том, что в интервале глубин 2676-2735 м выявлены дефекты обсадной трубы: перфорационные отверстия (мелкие и крупные), а также деформация типа вспучивание всего тела трубы.


Формула изобретения

Индукционный зонд для определения дефектов обсадных труб, состоящий из немагнитного герметичного корпуса с цилиндрическим основанием, на котором размещены магнитопровод с полюсными торцами и генераторная катушка, витки которой расположены коаксиально цилиндрическому основанию, а также индикаторные катушки, установленные аксиально и равноудаленно относительно цилиндрического основания, причем в каждой паре оси индикаторных катушек смещены относительно друг друга, а катушки включены попарно и встречно, отличающийся тем, что магнитопровод выполнен в виде полого цилиндра со сплошными кольцевыми полюсными торцами, а толщина стенки цилиндра и высота каждого торца равны между собой и их величину определяют по формуле

где h - толщина стенки цилиндра или высота каждого торца магнитопровода, м;
- удельное сопротивление магнитопровода, Омм;
0 - магнитная постоянная, равная 410-7 Гн/м;
- относительная магнитная проницаемость магнитопровода;
f - рабочая частота питания генераторной катушки Гц,
при этом расстояние между торцами магнитопровода определяют по формуле
l=2amax,
где l - расстояние между торцами магнитопровода, м;
amax - расстояние между наружной поверхностью торца магнитопровода и внутренней поверхностью обсадной трубы наибольшего диаметра, м,
а индикаторные катушки представляют собой многовитковые рамки без сердечника, имеющие в сечении форму параллелограмма с углом наклона большей его стороны к цилиндрическому основанию, рассчитываемому по следующей формуле:

где - угол наклона большей стороны параллелограмма к цилиндрическому основанию, град.;
d - высота намотки индикаторной катушки, м, определяемая по формуле

где D - диаметр провода, м;
N - число витков,
причем между торцами магнитопровода по окружности равномерно расположено четное количество индикаторных катушек в два ряда, с соблюдением соосности между последними, вплотную меньшей стороной параллелограмма к торцам магнитопровода и между собой в рядах, а каждая пара индикаторных катушек представлена диаметрально противоположными катушками из разных рядов.

РИСУНКИ

Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4, Рисунок 5



 

Похожие патенты:

Изобретение относится к контрольно-измерительной технике и может быть использовано в различных отраслях промышленности, где требуется измерение индукции (напряженности) постоянных, переменных или импульсных магнитных полей, в частности для контроля режимов намагничивания при проведении магнитопорошковой дефектоскопии

Изобретение относится к геофизическим исследованиям в скважинах и может быть использовано при электромагнитной дефектоскопии стальных труб, расположенных в скважине: бурильных, обсадных и насосно-компрессорных

Изобретение относится к устройствам для внутритрубного неразрушающего контроля трубопроводов, главным образом уложенных магистральных газопроводов путем пропуска внутри контролируемого трубопровода устройства, состоящего из одного или нескольких транспортных модулей, продвигающихся внутри трубопровода за счет давления потока газа, транспортируемого по трубопроводу, с установленными на корпусе датчиками, чувствительными к каким-либо параметрам, отражающим техническое состояние магистрального трубопровода

Изобретение относится к неразрушающему контролю изделий магнитным методом

Изобретение относится к области прикладной магнитооптики, в частности к методам неразрушающего контроля материалов на наличие дефектов, и может быть использовано при выявлении дефектов в изделиях, которые содержат ферромагнитные материалы, а также в криминалистике

Изобретение относится к области неразрушающего контроля и может быть использовано для выявления продольных трещин в заглубленных магистральных трубопроводах

Изобретение относится к области неразрушающего контроля и преднааначено для магнитной дефектоскопии тонкостенных ферромагнитных

Изобретение относится к области неразрушающего контроля и может быть использовано для выявления дефектов в протяженных объектах, например в трубах магистрального трубопроводного транспорта

Изобретение относится к нефтегазодобывающей промышленности и предназначено для перекрытия осевого канала лифтовой колонны труб под пакером и изоляции пласта от полости труб

Изобретение относится к нефтяной промышленности и предназначено для освоения, исследования и эксплуатации скважин с помощью насосно-эжекторных систем

Изобретение относится к нефтегазодобывающей промышленности и может быть использовано для отбора проб на устье скважин и нефтегазопроводов, исследования физических свойств устьевых и пластовых флюидов и определения соотношений давление-температура (РУТ), а также определения содержания свободной воды в отобранной пробе углеводородного флюида

Изобретение относится к нефтегазодобывающей промышленности, в частности к циркуляционным клапанам, применяемым при испытании скважин и предназначенным для создания циркуляции скважина - труба при подъеме колонны

Изобретение относится к измерению пористости образования

Изобретение относится к нефтяной промышленности и может быть использовано для повышения эффективности эксплуатационных скважин

Изобретение относится к испытаниям скважин с прямой и обратной циркуляцией жидкости в трубах

Изобретение относится к технике отбора жидкости из пласта при помощи испытателей пластов на трубах и предназначено для разгерметизации полостей и пластоиспытательного скважинного оборудования при разборке его после окончания цикла работ
Изобретение относится к нефтяной промышленности и может быть использовано для определения наличия нефтяных месторождений с контуром сложной конфигурации
Изобретение относится к горному делу и может быть использовано для определения степени засоления подземных вод на калийных предприятиях

Изобретение относится к горной промышленности, а именно к многоцикловому испытанию нефтяных и нефтегазовых скважин трубными пластоиспытателями в автоматическом режиме с местной регистрацией гидродинамических характеристик пласта
Наверх