Датчик термоанемометра

 

Изобретение относится к измерительной технике и может быть использовано для измерений характеристик газовых потоков. Датчик содержит чувствительный элемент, выполненный в виде подложки из монокристаллического полупроводникового материала трубчатой формы с наружным диаметром 0,1-100 мкм и толщиной стенки 0,001-1 мкм, на внутреннюю или наружную поверхность которой нанесен чувствительный слой электропроводного материала. Техническим результатом является увеличение частотного диапазона датчика. 1 ил.

Изобретение относится к измерительной технике и может быть использовано для измерений характеристик газовых потоков.

Известны датчики термоанемометров проволочный и пленочный [1]. Проволочные датчики изготавливают из тонких металлических проволочек с типичным диаметром 2,5-10 мкм длиной 100-200 диаметров. Такие датчики имеют большую постоянную времени (порядка миллисекунд) и недостаточное разрешение вдоль чувствительного элемента. Калибровка проволочных датчиков хорошо отработана и достаточно проста. Пленочные датчики представляют собой тонкую металлическую пленку, нанесенную на массивную подложку из изолятора. Из-за сильного влияния подложки эти датчики обладают пониженной чувствительностью, и получение количественных данных с их помощью сильно затруднено. Оба типа чувствительных элементов имеют перечисленные недостатки, ограничивающие область их применения.

Задачей изобретения является увеличение частотного диапазона датчика термоанемометра.

Поставленная задача достигается благодаря тому, что датчик термоанемометра, содержит чувствительный элемент, закрепленный на державках, и выполнен в виде подложки из монокристаллического полупроводникового материала трубчатой формы с наружным диаметром 0,1-100 мкм и толщиной стенки 0,001-1 мкм, на внутреннюю или наружную поверхность которой нанесен чувствительный слой электропроводного материала.

Указанные признаки не выявлены в других технических решениях при изучении уровня данной области техники и, следовательно, решение является новым и имеет изобретательский уровень.

Датчик термоанемометра изображен на чертеже.

Датчик термоанемометра содержит чувствительный элемент 1, выполненный в виде подложки 3 из монокристаллического полупроводникового материала трубчатой формы с наружным диаметром 0,1-100 мкм и толщиной стенки 0,001-1 мкм, на поверхность которого нанесен чувствительный слой электропроводного материала 2. Чувствительный элемент закреплен на двух державках-тоководах 4.

Датчик термоанемометра работает следующим образом.

Для измерения скорости газа чувствительный элемент 1 подключается с помощью тоководов 4 через мостовую измерительную схему (не показано) к регистрирующему устройству и нагревается электрическим током. Датчик устанавливают в потоке так, чтобы чувствительный элемент был расположен перпендикулярно направлению течения. Чувствительный элемент охлаждается потоком газа, что вызывает падение его температуры и, следовательно, уменьшение электрического сопротивления. По показаниям регистрирующего устройства с помощью предварительно полученной индивидуальной градуировочной характеристики датчика определяют скорость потока.

Трубчатая форма чувствительного элемента и выбранный материал несмотря на минимальные размеры (толщина стенки) обладают высокой прочностью. Из-за уменьшения поперечного сечения пропорционально уменьшается теплопередача вдоль чувствительного элемента, поэтому его длину можно сделать значительно меньше, чем у проволочного датчика. При этом прочность и пространственное разрешение датчика увеличивается. Кроме того, частотная характеристика предлагаемого датчика будет подобна частотной характеристике проволочного датчика, но постоянная времени при одинаковом наружном диаметре уменьшится пропорционально уменьшению площади поперечного сечения, то есть примерно в 25 раз.

При выбранной толщине стенки время, за которое выравнивается температура внешней и внутренней поверхностей трубочки при приведенной толщине стенки, составляет 10-7-10-10 с. При больших временах можно считать, что температуры внешней и внутренней поверхностей равны, поэтому чувствительный слой электропроводящего материала можно размещать как внутри, так и снаружи трубчатой подложки. Внутреннее расположение чувствительного слоя уменьшает влияние загрязнения чувствительного элемента на его характеристики.

Предлагаемый чувствительный элемент можно размещать на державках игольчатого типа (как у проволочных датчиков термоанемометра), в этом случае цилиндрическая форма чувствительного элемента позволяет применять для калибровки известные законы теплообмена, использующиеся при калибровке проволочных датчиков. Трубчатый чувствительный элемент можно размещать также на различных подложках (как у пленочных датчиков термоанемометра), в этом случае из-за малости зоны контакта чувствительного элемента с подложкой частотная характеристика датчика не изменится, вид законов теплообмена также не изменится.

Пример.

В ИТПМ СО РАН был изготовлен и использован датчик термоанемометра с чувствительным элементом из монокристалической полупроводниковой трубочки с наружным диаметром 5 мкм и толщиной стенки 0,1 мкм. На наружную поверхность трубочки был нанесен чувствительный слой электропроводного материала (золота) толщиной 0,03 мкм. Постоянная времени этого датчика в дозвуковом потоке при скорости 10 м/с равна 0,05 мс. Постоянная времени вольфрамового проволочного датчика диаметром 5 мкм в тех же условиях составила 0,5 мс. Таким образом, постоянная времени предлагаемого трубчатого датчика в 10 раз меньше, чем у проволочного, а значит частотный диапазон выше.

Предлагаемый датчик термоанемометра позволяет увеличить частотный диапазон и улучшить пространственное разрешение, используя при этом известные методы обработки полученных данных, что особенно важно при измерении турбулентных течений.

Источники информации 1. Ярин Л.П., Генкин А.Л., Кукес В.И. Термоанемометрия газовых потоков. Л.: Машиностроение, 1983, 198 с.

2. Патент РФ 2075243, МКИ G 01 P 5/12, 10.03.97 - прототип.

Формула изобретения

Датчик термоанемометра, содержащий трубчатый чувствительный элемент, закрепленный на державках, отличающийся тем, что чувствительный элемент выполнен в виде подложки из монокристаллического полупроводникового материала трубчатой формы с наружным диаметром 0,1-100 мкм и толщиной стенки 0,001-1 мкм, на внутреннюю или наружную поверхность которой нанесен чувствительный слой электропроводного материала.

РИСУНКИ

Рисунок 1



 

Похожие патенты:

Изобретение относится к измерительной технике, а именно к измерению массового расхода газа и к устройству тепловых расходомеров газа, предназначенных для использования в системах контроля и регулирования расхода газа в диапазоне 0-100 мг/с при широком варьировании входной температуры газа и температуры внешней среды

Изобретение относится к области приборостроения, а именно к области измерения скорости текучих сред, и может быть использовано, в частности, для измерения расхода газа в нескольких автономных каналах

Изобретение относится к устройствам измерения скорости потоков газа или жидкости и может найти применение в измерительной технике и приборостроении

Изобретение относится к измерению параметров движения и может быть использовано для измерения скорости движения газовоздушных потоков

Изобретение относится к измерительной технике и может быть использовано для измерения скорости газового потока и перепада давления в различных отраслях промышленности, медицинской технике и научных исследованиях

Изобретение относится к области любительского и спортивного рыболовства и может использовано для определения направления ветра, а также определения температуры его, поскольку успех ужения зависит от температуры и направления ветра в данной местности [1] Наиболее близким по технической сущности и достигаемому результату является устройство для определения направления ветра, содержащее датчик направления ветра на четырех терморезисторах, объединенных в мостовую схему [2] Это устройство также включает направляющую для воздушного потока, термостойкое основание

Изобретение относится к измерительной технике и может быть использовано для измерения скоростей потоков газов и жидкостей

Изобретение относится к горной автоматике, конкретно к способам и устройствам для автоматического контроля скорости воздуха в проходческих, добычных участках шахт, на откаточных и вентиляционных штреках для обеспечения нормальных условий труда шахтеров

Изобретение относится к измерительной технике и может быть использовано при измерении скорости движения газовой или жидкой среды, ее плотности, состава, а также состава и плотности твердых теплопроводных сред

Изобретение относится к области микроэлектронных и микромеханических устройств

Изобретение относится к области микроэлектронных и микромеханических устройств и может быть использовано в качестве датчиков расхода и изменения уровней жидкостей и газов

Изобретение относится к измерительной технике и может использоваться для определения скорости однофазного потока жидкости в стационарных и переходных режимах

Изобретение относится к измерительной технике и может быть использовано при градуировке и поверке измерителей скорости потока жидкостей или газов

Изобретение относится к области измерения скоростей текучих сред и может быть использовано для оперативного измерения скорости газового потока

Изобретение относится к измерительной технике и может быть использовано при измерении параметров газовых и жидких сред (скорости, давления, состава)

Изобретение относится к области преобразовательной техники и предназначено для преобразования параметров газодинамических характеристик газовых и жидких потоков с фильтрацией действующих при преобразовании помех
Наверх