Магнитооптическое стекло

 

Изобретение относится к составам магнитооптических стекол, обладающих высоким значением постоянной Верде в ультрафиолетовой (УФ) области спектра, которые могут быть использованы в оптическом приборостроении и квантовой электронике, например для создания магнитооптических (фарадеевских) затворов, модуляторов, циркуляторов и аналогичных устройств. Техническим результатом изобретения является увеличение постоянной Верде в ближней части УФ области спектра и расширение ассортимента используемых в УФ диапазоне материалов. Магнитооптическое стекло, включающее 2O3, содержит EuO, при следующем соотношении указанных компонентов, вес. %: В2O3 39-45, EuO 55-61. 2 табл.

Изобретение относится к составам магнитооптических стекол, обладающих высоким значением постоянной Верде в ультрафиолетовой (УФ) области спектра, которые могут быть использованы в оптическом приборостроении и квантовой электронике, например для создания магнитооптических (фарадеевских) затворов, модуляторов, циркуляторов и аналогичных устройств.

Известно магнитооптическое стекло, содержащее, вес. %: K2O - 12-28 Аl2О3 - 6-32 В2О3 - 36-79 Fe2O3 - 1-4 MnO - 1-6, причем К2O/Аl2O3=1,9-1,7.

Данное стекло имеет значение константы Верде 0,1-1,6 мин/см Э.

Недостатком этого стекла является его непрозрачность в УФ диапазоне спектра, поскольку коротковолновый край поглощения находится в видимой области [1].

Наиболее близким к заявляемому стеклу является магнитооптическое стекло, включающее, вес. %: В2O3 - 52,5-78,7 Рr2O3 - 10-40 Li2O - 7,5-11,3
при отношении В2O3/Li2O, равном 4-7. Данное стекло имеет значение постоянной Верде 2,83-0,47 мин/см Э при =248-366 нм в УФ области.

Недостатком этого стекла является недостаточно высокое значение постоянной Верде в ближней части УФ области спектра 350-400 нм [2].

Техническим результатом изобретения является увеличение постоянной Верде в ближней части УФ области спектра и расширение ассортимента используемых в УФ диапазоне материалов.

Технический результат достигается тем, что магнитооптическое стекло, включающее В2О3, содержит ЕuО, при следующем соотношении указанных компонентов, вес. %:
В2О3 - 39-45
EuO - 55-61
От наиболее близкого аналога заявляемое стекло отличается тем, что содержит EuO при соотношении компонентов, вес. %:
В2O3 - 39-45
EuO - 55-61
Введение EuO в состав стекла позволяет увеличить значения постоянной Верде в ближней части УФ области спектра.

Стекло синтезируется при 1000oС в течение 2 часов в стеклоуглеродном тигле в атмосфере аргона и 5 объемных процентов водорода. Стеклование производится путем быстрого охлаждения в этом же тигле. Полученные стекла отжигаются при температуре 250-300oС в течение суток.

В таблице 1 приведены примеры составов магнитооптического стекла. В таблице 2 приведены значения постоянной Верде заявляемого магнитооптического стекла и прототипа [2] в ближней части УФ области спектра.

Как видно из таблиц, заявляемое магнитооптическое стекло обладает высокими значениями постоянной Верде в ближней части УФ области спектра (350 - 400 нм) и может быть использовано для управления оптическим излучением в этой области.

ЛИТЕРАТУРА
1. Авт. св. СССР 643448, МКИ2 С 03 С 3/30.

2. Пат. России 2098366, 6 С 03 С 3/15, 1997 г., (прототип).


Формула изобретения

Магнитооптическое стекло, включающее B2O3, отличающееся тем, что оно содержит ЕuО, при следующем соотношении указанных компонентов, вес. %:
В2O3 - 39-45
EuO - 55-61и

РИСУНКИ

Рисунок 1, Рисунок 2



 

Похожие патенты:

Изобретение относится к составам магнитооптических стекол, обладающих высоким значением постоянной Верде в ультрафиолетовой (УФ) области спектра, которые могут быть использованы в оптическом приборостроении и квантовой электронике, например, для создания магнитооптических (фарадеевских) затворов, модуляторов, циркуляторов и аналогичных устройств

Изобретение относится к составам магнитооптических стекол, обладающих высоким значением постоянной Верде в ультрафиолетовой области спектра, которые могут быть использованы в оптическом приборостроении и квантовой электронике, например, для создания магнитооптических (фарадеевских) затворов, модуляторов, циркуляторов и аналогичных устройств

Изобретение относится к оптическим стеклам, которые могут быть использованы в массовой кино-фотооптике

Стекло // 2386596
Изобретение относится к оптическим материалам, которые могут использоваться в качестве светофильтров, подавляющих развивающиеся перпендикулярно оси активного элемента паразитные моды моноимпульсных неодимовых лазеров при 1,06 и 1,34 мкм

Изобретение относится к оптическим материалам, в частности к составам оптических стекол, которые могут использоваться в качестве активных сред лазеров (в том числе волоконных), генерирующих в оранжево-красной области спектра

Изобретение относится к оптическим материалам, в частности к плавленому алюмоборатному стеклу, активированному трехзарядными ионами церия (Се3+) и тербия (Tb3+), которое может использоваться в качестве визуализатора ультрафиолетовых изображений и светового трансформатора из ультрафиолетовой в желто-зеленую область спектра. Техническим результатом изобретения является создание стекла с высоким активным поглощением в ультрафиолетовой области спектра и эффективной люминесценцией в области максимальной спектральной чувствительности глаза человека. Стекло (варианты) имеет следующий состав, мол.%:В2О3 55-70, Al2O3 15-35, La2O3 1-10, Се2О3 1-5, Tb2O3 2-10 и сверх 100% Sb2O3 0,5-5 или В2О3 55-70, Al2O3 15-35, Y2O3 1-9, La2O3 1-9, Се2О3 1-5, Tb2O3 2-1 и сверх 100% Sb2O3 0,5-5 или В2О3 55-70, Al2O3 15-35, Y2O3 1-9, La2O3 1-9, Се2О3 1-5, Gd2O3 1-9, Tb2O3 2-10 и сверх 100% Sb2O3 0,5-5, или В2О3 55-70, Al2O3 15-35, Y2O3 1-10, Се2О3 1-5, Tb2O3 2-10 и сверх 100% Sb2O3 0,5-5, или В2О3 55-70, Al2O3 15-35, Gd2O3 1-10, Се2О3 1-5, Tb2O3 2-10 и сверх 100% Sb2O3 0,5-5, при этом атомарное отношение Tb/Се≥1. 5 н.п. ф-лы, 1 ил., 1 табл.

Изобретение относится к оптическим материалам, в частности к составам Yb-содержащих оптических стекол, которые могут использоваться в качестве активных сред лазеров (в том числе волоконных), генерирующих в ближней инфракрасной области спектра. Техническим результатом изобретения является создание стекла, характеризующегося интенсивной широкополосной люминесценцией в ближней инфракрасной области спектра и пригодного для использования в качестве активной среды лазера. Стекло, содержащее B2O3, Al2O3, La2O3 и/или Y2O3 и Yb2O3, имеет следующее соотношение компонентов, мол.%: 57-62 B2O3, 27-33 Al2O3, 1-9,5 La2O3 и/или Y2O3, 0,5-10 Yb2O3. 1 табл., 1 ил.

Изобретение относится к оптическим материалам, в частности к составам алюмоборатных стекол, которые могут использоваться в качестве преобразователей ультрафиолетового и, возможно, рентгеновского излучения в квазибелый свет, а также в качестве стандартов для коррекции регистрируемых спектров люминесценции. Техническим результатом изобретения является создание люминесцирующего стекла, характеризующегося бесструктурной полосой люминесценции. Люминесцирующее стекло содержит B2O3, Al2O3, La2O3 и/или Y2O3 и Sb2O3 при следующем соотношении компонентов, мол.%: 58-67 B2O3, 22-32 Al2O3, 5-12 La2O3 и/или Y2O3 и сверх 100% 0,3-10 Sb2O3. 1 табл., 2 ил.

Изобретение относится к области материалов для твердотельных индикаторов ультрафиолетового излучения. Фотохромное люминесцентное стекло содержит оксид европия Eu2O3 в концентрации 0,43-0,49% (мас.) и тетраборат лития Li2B4O7 (остальное). Стекло интенсивно люминесцирует при воздействии ультрафиолетового (УФ) излучения и практически мгновенно изменяет окраску при изменении интенсивности УФ-излучения. Стекло может быть использовано в простых индикаторах излучения ближнего и среднего УФ-диапазона, а также при выборе источников освещения. Технический результат изобретения - создание фотохромного люминесцентного стекла, имеющего яркую окраску и позволяющего определить наличие и оценивать интенсивность УФ-излучения. 1 табл., 3 пр., 4 ил.

Изобретение относится к области оптического материаловедения. Технический результат – получение однородных кристаллических линий в объеме стекла. Локальная кристаллизация стекол проходит под действием фемтосекундного лазерного излучения. Пучок лазера пропускают через призматический телескоп или цилиндрическую линзу до фокусирующего объектива, тем самым получая перетяжку с эллиптическим поперечным сечением, имеющим соотношение большой и малой осей не менее 2:1 и с ориентацией длинной оси эллипса вдоль направления роста кристалла. Стекла имеют следующий состав, мол.%: La2O3 23-26, В2О3 23-26, GeO2 49-52 или La2O3 20,9-26, В2O3 23-27, GeO2 49-52, Nd2O3 0,1-3. Пучок перемещают относительно стекла со скоростью 10-50 мкм/с и энергией импульса лазерного излучения в пределах 0,5-2,5 мкДж. 6 ил., 3 пр.

Изобретение относится к способу локальной кристаллизации стекол под действием лазерного пучка. Локальную кристаллизацию стекол лантаноборогерманатной системы, легированных неодимом, проводят с помощью импульсного фемтосекундного лазера, перемещающегося относительно стекла со скоростью 10-50 мкм/с на глубине от 100 мкм. Частоту следования фемтосекундных импульсов задают в пределах 25-100 кГц, а среднюю мощность - в пределах 0,1-1,2 Вт. Используют стекло следующего состава, мол.%: La2O3 14,9-26, В2O3 23-26, GeO2 49-52, Nd2O3 0,1-10. Технический результат – получение однородных кристаллических линий со встроенными в кристаллическую решетку ионами неодима в объеме стекла. 5 ил., 3 пр.
Наверх