Жидкостный ракетный двигатель малой тяги

 

Жидкостный ракетный двигатель малой тяги работает на жидком химическом топливе. Двигатель состоит из цилиндрического корпуса, в который установлена полая втулка, и смесительной головки, расположенной на корпусе и образующей с внутренней полостью втулки полость камеры сгорания и реактивного сопла. Втулка выполнена составной из жаропрочного диэлектрического материала и имеет два кольцевых паза, в которые установлены кольцевые электроды из жаростойкого материала. Внутренний диаметр электродов равен внутреннему диаметру втулки. Электроды соединены с тоководами, расположенными в наружных продольных пазах втулки электроизолированно от корпуса, выведены из корпуса и соединены с источником электрического тока. Двигатель дополнительно содержит программно-временное устройство, соединяющее источник электрической энергии с тоководами, связанное с системой управления жидкостного ракетного двигателя малой тяги. Изобретение позволит повысить экономичность и ресурс двигателя за счет синхронизации подвода дополнительной электроэнергии от отдельного источника с моментом выхода двигателя на установившийся режим работы. 1 ил.

Изобретение относится к машиностроению, к космической технике и может быть использовано для создания тяги на летательном аппарате.

Известен электродуговой двигатель, состоящий из камеры с расположенными в ней электродами, соединенными с источником электроэнергии, и реактивного сопла (Космические двигатели: состояние и перспективы. Под ред. Л. Кейвни. М. : Мир, 1988, с.193, рис.2.10б). Нагрев рабочего тела происходит за счет протекания по нему электрического тока. Недостатком устройства являются ограничения на величину удельного импульса и невысокий КПД, обусловленный потерями на ионизацию рабочего тела и потерями тепла высокотемпературной плазмы в элементах конструкции двигателя.

Известен жидкостный ракетный двигатель малой тяги (ЖРДМТ) Rb-6, состоящий из цилиндрического корпуса, в который установлена полая втулка из жаропрочного материала; расположенной на корпусе смесительной головки, образующей с внутренней полостью втулки полость камеры сгорания и реактивного сопла (там же, с.154). Двигатель использует топливную пару N2, О4 и монометилгидразин, развивает тягу около 2 Н и имеет удельный импульс ~1860 м/с в импульсном режиме. Недостатком двигателя является сравнительно невысокая экономичность.

Наиболее близким по технической сущности к заявляемому изобретению следует считать ЖРДМТ, работающий на жидком химическом топливе, состоящий из цилиндрического корпуса, в который установлена полая втулка, выполненная составной из жаропрочного диэлектрического материала и имеющая два кольцевых паза, в которые установлены кольцевые электроды из жаростойкого материала, внутренний диаметр которых равен внутреннему диаметру втулки и соединенные с соответствующими тоководами, расположенными в наружных продольных пазах втулки электроизолированно от корпуса, электроды выведены из корпуса и соединены с источником электрической энергии, и смесительной головки, расположенной на корпусе и образующей с внутренней полостью втулки полость камеры сгорания и реактивного сопла (заявка RU 99123125 A, МПК F 02 К 3/10, 2001).

Самовоспламеняющиеся компоненты ракетных топлив под избыточным давлением подаются в камеру двигателя по трубопроводам от баков через клапаны и форсунки в смесительной головке. В камере происходит смешение и горение компонентов. Продукты сгорания нагреваются и истекают через реактивное сопло, создавая тягу. При подключении электродов к внешнему источнику электрической энергии происходит ионизация продуктов сгорания, образование и поддержание дугового разряда. Подводимая к продуктам сгорания дополнительная энергия приводит к повышению температуры рабочего тела и удельного импульса двигателя.

Управляющие сигналы на открытие клапанов и подключение внешнего источника электропитания формируются в системе управления. Время выхода на установившийся режим работы двигателя может составлять несколько секунд, что определяется временем открытия клапанов и временем задержки воспламенения жидкого топлива (Основы теории конструкции и эксплуатации энергетических и двигательных установок космических аппаратов с неядерными источниками энергии. Под общей редакцией проф. С.В. Тимашева. СПб.: ВИККИ им. А.Ф. Можайского, 1992, с.213, 214).

Недостатком данного ЖРДМТ является недостаточно эффективное использование энергии внешнего источника электрической энергии и уменьшение ресурса работы двигателя. Это объясняется тем, что мощность источника электропитания рассчитывается на установившийся режим работы двигателя для ионизации продуктов сгорания, образования и поддержания дугового разряда.

Во время выхода двигателя на режим часть электроэнергии будет теряться на дополнительный нагрев и эрозию электродов.

Целью изобретения является повышение экономичности и ресурса двигателя за счет синхронизации подвода дополнительной электроэнергии от отдельного источника с моментом выхода двигателя на установившийся режим работы.

Указанная цель достигается тем, что ЖРДМТ, работающий на жидком химическом топливе, состоящий из цилиндрического корпуса, в который установлена полая втулка, выполненная составной из жаропрочного диэлектрического материала и имеющая два кольцевых паза, в которые установлены кольцевые электроды из жаростойкого материала, внутренний диаметр которых равен внутреннему диаметру втулки и соединенные с соответствующими тоководами, расположенными в наружных продольных пазах втулки электроизолированно от корпуса, электроды выведены из корпуса и соединены с источником электрической энергии; и смесительной головки, расположенной на корпусе и образующей с внутренней полостью втулки полость камеры сгорания и реактивного сопла, дополнительно содержит программно-временное устройство (ПВУ), соединяющее источник электрической энергии с тоководами, связанное с системой управления ЖРДМТ.

Сущность изобретения поясняется схемой, представленной на чертеже.

Устройство содержит движитель 1, объединяющий цилиндрический корпус, в который установлена полая втулка, выполненная составной из жаропрочного диэлектрического материала и имеющая два кольцевых паза, в которые установлены кольцевые электроды из жаростойкого материала, внутренний диаметр которых равен внутреннему диаметру втулки и соединенные с соответствующими тоководами 2, расположенными в наружных продольных пазах втулки электроизолированно от корпуса, и смесительную головку, расположенную на корпусе и образующую с внутренней полостью втулки полость камеры сгорания и реактивного сопла, программно-временное устройство 3, соединяющее источник электрической энергии 4 с тоководами 2, связанное с системой управления (не показана) ЖРДМТ.

Устройство работает следующим образом.

При отработочных испытаниях ЖРДМТ определяется время выхода на установившийся режим работы движителя 1. ПВУ 3 настраивают на это время, соответствующее временной задержке подключения источника электрической энергии 4 к тоководам 2 с момента подачи команды системой управления на запуск ЖРДМТ.

При использовании устройства в составе летательного аппарата по команде системы управления на запуск ЖРДМТ самовоспламеняющиеся компоненты ракетных топлив под избыточным давлением подаются в камеру двигателя по трубопроводам от баков через клапаны и форсунки в смесительной головке. В камере происходит смешение и горение компонентов. Продукты сгорания нагреваются и истекают через реактивное сопло движителя 1, создавая тягу. По истечении времени выхода на установившийся режим работы движителя 1 ПВУ 3 подключает тоководы 2 к внешнему источнику электрической энергии 4, что обеспечивает ионизацию продуктов сгорания, образование и поддержание дугового разряда только в расчетном режиме работы и исключает потери электрической энергии на начальном этапе работы движителя 1 и эрозию электродов. Выключение двигателя производится по команде системы управления путем закрытия клапанов подачи компонентов ракетных топлив и одновременного отключения источника электрической энергии 4 от тоководов 2 с помощью ПВУ 3. После выключения движителя 1 ПВУ 3 автоматически переводится в исходное состояние для следующего запуска ЖРДМТ. Экономия электрической энергии, подводимой к ЖРДМТ, за все время функционирования летательного аппарата может определяться по формуле: Э = Pвnдвnвк, где Р - электрическая мощность, подводимая к ЖРДМТ; в - время выхода движителя на установившийся режим; nдв - число двигателей, работающих одновременно; nвк - число включений ЖРДМТ за все время функционирования.

В случае применения предлагаемого устройства в составе комплексной двигательной установки (Конструирование автоматических космических аппаратов. Под ред. Д. И. Козлова. М.: Машиностроение, 1996, с.423-428) при мощности, подводимой к двигателю, 1000 Вт, времени выхода на установившийся режим работы движителя 0,01 с, при числе включений 100000 экономия электрической энергии, подводимой к 4 ЖРДМТ, за все время функционирования КА составит 1,1 кВтч.

Формула изобретения

Жидкостный ракетный двигатель малой тяги (ЖРДМТ), работающий на жидком химическом топливе, состоящий из цилиндрического корпуса, в который установлена полая втулка, выполненная составной из жаропрочного диэлектрического материала и имеющая два кольцевых паза, в которые установлены кольцевые электроды из жаростойкого материала, внутренний диаметр которых равен внутреннему диаметру втулки, и соединенные с соответствующими тоководами, расположенными в наружных продольных пазах втулки электроизолированно от корпуса, электроды выведены из корпуса и соединены с источником электрической энергии, и смесительной головки, расположенной на корпусе и образующей с внутренней полостью втулки полость камеры сгорания и реактивного сопла, отличающийся тем, что дополнительно содержит программно-временное устройство, соединяющее источник электрической энергии с тоководами, связанное с системой управления ЖРДМТ.

РИСУНКИ

Рисунок 1



 

Похожие патенты:

Изобретение относится к области газоразрядных высоковакуумных (Р<0,1 Па) устройств

Изобретение относится к области космической техники, а именно к электрореактивным двигательным установкам, и может быть использовано в стационарных плазменных двигателях и двигателях с анодным слоем, а также в области прикладного применения плазменных ускорителей

Изобретение относится к области космической техники, а именно к электрореактивным двигательным установкам, и может быть использовано в стационарных плазменных двигателях, а также в области прикладного применения плазменных ускорителей

Изобретение относится к космическим технологиям, а точнее к системам электроракетных двигательных установок космических аппаратов на базе стационарных плазменных двигателей

Изобретение относится к области космической техники, а именно к электрореактивным двигательным установкам, и может быть использовано в стационарных плазменных двигателях и двигателях с анодным слоем, а также в области прикладного применения плазменных ускорителей

Изобретение относится к плазменной технике и может быть использовано при конструировании плазменных ускорителей и на их основе электроракетных двигателей, в частности плазменных ускорителей (двигателей) с замкнутым дрейфом электронов, часто называемых холловскими, предназначенных для работы в космических условиях для межорбитальной транспортировки, а также выполнения задач коррекции орбиты и ориентации космических аппаратов, и может найти применение в других областях техники, например в электронике, для ионной чистки, фрезеровки, получения покрытий различного назначения, в вакуумной металлургии

Изобретение относится к плазменной технике и может быть использовано при конструировании электроракетных двигателей, в частности двигателей на основе плазменных ускорителей с замкнутым дрейфом электронов и ионных ускорителей, предназначенных для работы в космических условиях для межорбитальной транспортировки, а также выполнения задач коррекции орбиты и ориентации космических аппаратов, и может найти применение в других областях техники, например в электронике для ионной очистки, фрезеровки, получения покрытий различного функционального назначения, в вакуумной металлургии

Изобретение относится к области космической техники и может использоваться в электрореактивных двигательных установках, в стационарных плазменных двигателях и двигателях с анодным слоем, а также в области прикладного применения плазменных ускорителей

Изобретение относится к космическим энергодвигательным установкам, а более конкретно - к маршевым электроракетным двигательным установкам (ЭРДУ) космических аппаратов и комплексов

Изобретение относится к ракетно-космической технике (РКТ) и может быть использовано при разработке двигательных установок перспективных средств межорбитальной транспортировки (СМТ), предназначенных для выведения космических аппаратов (КА) с низких исходных орбит (НИО) на высокоэнергетические орбиты (ВЭО), включая геостационарную (ГСО), или на отлетные от Земли траектории

Изобретение относится к космической технике, а именно к электрическим ракетным двигателям (ЭРД) малой тяги для управления положением космических аппаратов (КА ) в полете

Изобретение относится к области создания реактивной тяги или получения механической энергии

Изобретение относится к области создания электрических ракетных двигателей, которые имеют наилучшие характеристики по удельному импульсу (отношению силы тяги к массовому расходу рабочего тела), выражаемой через скорость истечения рабочего тела из сопла

Изобретение относится к области авиационного и космического двигателестроения
Наверх