Способ изготовления изделий из муллитсодержащих огнеупоров

 

Изобретение относится к огнеупорной промышленности и может быть использовано для изготовления конструкционных элементов футеровки аппаратов, работающих в контакте с хлорсодержащими средами. Для снижения открытой пористости и повышения химической стойкости в хлорсодержащих средах на стадии подготовки компонентов шихты получают спек, обоженный при температуре 1300-1400oС, содержащий, мас.%: SiO2 55-57, Al2О3 11-13, CaO 22-24, MgO 2-4, TiO2 1-3, ZnO l-3, R2O, Fe2O3, F остальное. Полученный спек вводят в шихту в виде мелкодисперсной смеси совместного помола фракции <0,01 мм, состава, мас.%: спек 19-44, глина 14-20, муллитсодержащий наполнитель 41-61, при следующем соотношении компонентов шихты, мас. %: 67-73% муллитсодержащий зернистый наполнитель фракции > 0,09 мм, мелкодисперсная смесь совместного помола остальное, временная технологическая связка 5 - 12%, сверх 100%. Далее изделия формуют, сушат и обжигают. Данный способ позволяет получать продукцию с повышенными эксплуатационными характеристиками при низкой себестоимости. 1 табл.

Способ относится к технологии огнеупоров, которые могут использоваться для изготовления конструкционных элементов футеровки аппаратов, работающих в контакте с хлорсодержащими средами.

Интенсификация процессов получения из рудных концентратов редкоземельных элементов с применением хлорсодержащих компонентов определяет актуальность проблемы создания материалов и технологий изготовления конструкционных изделий для обеспечения повышенной устойчивости футеровок в условиях циркуляции газожидкостных потоков при наличии хлора и его соединений.

В информационных источниках из обширного класса огнеупорных материалов выделяют муллитсодержащие композиции как наиболее устойчивые к хлорсодержащим средам, а технологические приемы, используемые для изготовления конструкционных изделий, базируются на создании структур из крупнозернистого наполнителя и мелкодисперсных компонентов.

(1. П.П. Будников "Химия и технология силикатов". - Киев: Наукова Думка, 1964, с. 496-501.

2. Коршунов Б. Г., Стефанюк С.Л. Введение в хлорную металлургию редких элементов. - М.: Металлургия, 1970, с. 173.

3. Рудников П.П., Харитонов Ф.Я. Керамические материалы для агрессивных сред. - М.: Стройиздат, 1971, с. 114-123.

4. Взаимодействие огнеупоров с металлами и шлаками. Отраслевой тематический сборник научных трудов. - Ленинград, 1980, с. 63-68.) С технологической точки зрения необходимо экспериментальное подтверждение влияния технологических параметров на состояние поверхности, плотности, структурных факторов и состава, определяющих устойчивость в реальных эксплуатационных условиях.

Известно техническое решение для изготовления огнеупоров с прерывистым зерновым составом, включающее 40-60% зернистого муллитосодержащего наполнителя фракции более 0,5 мм, а остальное - тонкомолотые алюмосиликатный и цирконистый компоненты фракции менее 0,09 мм в виде смеси совместного помола, причем смесь совместного помола имеет следующий состав, %: муллитсодержащий наполнитель - 40-70 , огнеупорная глина или каолин 20-30, диоксид циркония - остальное (но не менее 10), а соотношение свободных SiО2 / ZrО2 = 0,7 - 0,5, приготовленную массу прессуют и обжигают при температуре 1400-1500oС (патент RU, 2107674, МКИ С 04 В 35/482, 35/11, 35/185, заявлен 27.11.95, опубл. в Бюл. 9, 27.03.98).

Недостатком известного технического решения является наличие высокой открытой пористости (15-20%), что приводит к неравномерной, местной коррозии, а введение оксида циркония, менее устойчивого к хлорсодержащим средам, к ускоренной деградации физико-механических свойств при высокотемпературной эксплуатации огнеупора.

Наиболее близким к заявляемому объекту по решаемой технической задаче - прототипом - является способ изготовления муллитсодержащих огнеупоров.

Способ состоит из двух стадий. На первой стадии синтезируют шамот из нижнеувельской полукислой глины и проводят его фракционирование. Для получения изделий изготавливают шихту, содержащую 55% шамота и 45% невьянского каолина, смесь прессуют на прессе 4 КФ-200 при 6-8 циклах в минуту и обжигают в газокамерной печи при температуре 1260-1340oС (Устюжина Н.Н. и др. Высокостойкие огнеупоры для магниевых хлораторов и электролизеров. Огнеупоры, 1967, 5, с. 26).

Описанный способ позволяет получать полукислые изделия с высоким содержанием SiO2 и обладающих достаточной термической стойкостью и огнеупорностью до 1610-1650oС.

Недостатком изготовляемых изделий является высокая открытая пористость 21,4%, которая снижает коррозионную стойкость в расплавах хлоридов.

Кроме того, в результате технологического процесса образуется вторичный муллит неравновесного состава, который после воздействия при высоких температурах в агрессивных средах претерпевает ряд процессов, связанных с диффузионным переносом компонентов, приводящих к ускоренной деградации эксплуатационных характеристик.

Задачей авторов является разработка способа изготовления изделий из муллитсодержащих огнеупоров, обеспечивающего достижение цели -снижение открытой пористости и повышение химической стойкости в хлорсодержащих средах.

Поставленная цель достигается в отличии от известного способа тем, что на стадии подготовки компонентов шихты получают спек, закаленный с 1300-1400oС, содержащий, мас.%: SiО2 - 55 - 57 Al2O3 - 11 - 13 CaO - 22 - 24 MgO - 2 - 4 TiO2 - 1 - 3 ZnO - 2 - 3 (R2O, Fе2О3, F) - Остальное шихту формируют из 67-73 мас.% муллитсодержащего зернистого наполнителя, фракции > 0,09 мм, а остальное мелкодисперсная смесь совместного помола, фракции <0,01 мм состава, мас.%:
Спек - 19 - 44
Глина - 14 - 20
Огнеупорный наполнитель того же состава, что и зернистый - 42 - 61
смесь увлажняют путем введения 5 -12% сверх 100% временной технологической связки, формируют любым способом, в зависимости от конфигурации и геометрических размеров изделий, проводят сушку и обжигают.

Техническая сущность заявляемого способа заключается в следующем:
- состав спека является результатом экспериментальных проработок по влиянию добавок на полноту муллитобразования, а закалка позволяет получить кварц в форме -тридимита, который, по представлениям П.П. Будникова, является наиболее устойчивым компонентом к хлорсодержащим средам;
- получение спека позволяет равномерно распределить добавки при получении шихты;
- получение шихты из расчетного количества крупки муллитсодержащего наполнителя и мелкодисперсной комплексной компоненты позволяет получить заданный состав огнеупора и преследует цель снижения объемных усадочных эффектов при уплотнении мелкодисперсной компоненты при ее распределении в приграничных областях крупнозернистых частиц;
- количество мелкодисперсной компоненты необходимо и достаточно, чтобы получить материал с повышенной плотностью и по данным фазового анализа с использованием имерсионного метода определения, синтезировать структуру, состоящую из призматических кристаллов муллита, связанных стекловидной фазой;
- количественное содержание компонентов мелкодисперсной фазы в шихте определено по их влиянию на кинетику образования равновесного состава муллита и физико-механических характеристик полуфабриката: при 19 мас.% спека не происходит полной муллитизации, при > 44 мас.% в процессе спекания образуется большое количество жидкой фазы, приводящей к деформации изделий; при содержании глины < 14 мас. % полуфабрикат не обладает транспортировочной прочностью, а при > 20 мас.% появляется перепрессовочные дефекты; при > 5 мас.% временной технологической связки не происходит равномерного распределения мелкодисперсной компоненты, а > 12 мас.% увеличивается время сушки.

Формование изделий предусматривает получение изделий заданных геометрических размеров и конфигурации, которые определяют:
- метод организации формы: полусухое или гидростатическое прессование, виброуплотнение или тромбование.

Сушка полуфабриката необходима для удаления избытка влаги и позволяет интенсифицировать процесс подъема температуры при обжиге.

При обжиге формируют физико-механические характеристики, фазовой состав и структуру огнеупорного материала, которые определяют работоспособность изделий в агрессивной эксплуатационной среде.

Пример осуществления способа.

Процесс использовали для изготовления футеровочного, прямого 5 и клиновидного 22 кирпича.

Приготовлению формовочной массы предшествовали операции подготовки компонентов.

Для изготовления крупнозернистой фракции использовали лом изделий или технологические отходы при производстве огнеупора марки МЛС-62, соответствующие ГОСТ 24704-81. После дробления и частичного измельчения путем ситового анализа отбирали фракцию > 0,09 - 2,5 мм и затаривали ее в накопительном бункере. Фракцию < 0,09 мм использовали для получения комплексной мелкодисперсной компоненты.

Для изготовления спека проводили шихтовку из индивидуальных технических оксидных компонентов путем их смешивания в Z-образном смесителе. Для получения формовочной смеси порошкообразную смесь увлажняли 7 мас.% технического лигносульфоната марки Т. При удельном давлении прессования 70-80 МПа формировали брикеты размером: Д=40 мм, n = 50 мм. Брикеты высушивали при температуре 120 - 130oС в течение 10 часов. Высушенный полуфабрикат спекали в воздушной камерной среде при температуре 135050oС в течение 10 часов. После изотермической выдержки брикеты извлекали и закаляли в воде. Химический анализ на содержание компонентов показал среднее арифметическое значение ингредиентов в спеке, мас.%:
SiO2 - 55,8
Аl2О3 - 11,7
СаО - 23,2
MgO - 3,5
TiO2 - 1,5
ZnO - 2,6
Fe2О3 - 0,2
F - 0,1
Na2O+K2O - 0,4
Брикеты спека измельчали и отсеивали фракцию < 0,09 мм, которую использовали при изготовлении комплексной мелкодисперсной компоненты в шихте.

Мелкодисперсная компонента шихты изготавливалась путем совместного вибропомола смеси состава, мас.%:
Спек - 31,5
Глина - 15
Огнеупорный наполнитель того же состава, что и зернистый - 53,5
Вибропомол проводили до удельной поверхности, обеспечивающей средний размер частиц < 0,01 мм.

Шихту получали в мешалке с Z-образными лопастями. Первоначально загружали крупнозернистую фракцию МЛС-62 и половину от расчетного (~ 4 мас.%) количества временной технологической связки в виде технического лигносульфоната с плотностью 1,2 г/см3 и проводили смешивание в течение 10 мин. Не прекращая процесс смешивания, вводили мелкодисперсную смесь порциями (15-20% от расчетного) и доувлажняли оставшимся количеством лигносульфоната. Общее время перемешивания составляло 20-25 мин.

Подготовленную массу выгружали на вибросита с размером ячейки 4-5 мм и гранулировали.

Формовочную массу помещали в пресс-форму и производили прессование на 400-тонном гидравлическом прессе модели ДБ-43-4 при удельном давлении 100-120 МПа.

После формования изделия замеряли, взвешивали для определения объемного веса. Среднестатистический доверительный интервал не превышал 0,2 г/см3.

Сушку проводили в электрической двухкамерной сушилке при температуре 120-130oС до достижения остаточной влажности 0,20,3%.

Обжиг изделий проводили в газопламенной печи при температуре 1550 50oС.

Из изделий вырезали образцы из разных точек объема (5-7 образцов) и по стандартным методикам для огнеупорной промышленности контролировали физико-механические свойства и устойчивость в хлорсодержащей среде.

Результаты определений представлены в таблице.

Данные таблицы свидетельствуют, что предлагаемый способ изготовления изделий из муллитсодержащих огнеупоров позволяет получать продукцию с повышенными эксплуатационными характеристиками и является конкурентоспособным по сравнению с аналогичными техническими решениями.

Практическое осуществление заявляемого способа подтверждает, что предлагаемое техническое решение позволяет эффективно реализовать отходы производства или бой изделий, прошедших эксплуатацию, и приводит к рациональному использованию исходного сырья и снижает себестоимость продукции на изготовление единицы продукции.

Способ практически реализуется на стандартном промышленном оборудовании с обеспечением мер безопасности для персонала и окружающей среды, объективно контролируется отечественными измерительными системами при изготовлении промышленных партий изделий заданного фазового и химического состава.


Формула изобретения

Способ изготовления изделий из муллитсодержащих огнеупоров, включающий подготовку компонентов шихты, содержащих силикатообразующие ингредиенты, дробление, измельчение, рассев на зернистую и мелкодисперсную фракцию, получение формовочной смеси, формование, сушку и обжиг в газовой среде, отличающийся тем, что на стадии подготовки компонентов получают спек, обожженный при 1300-1400oС, содержащий, мас.%:
SiO2 - 55- 57
Аl2O3 - 11-13
СаO - 22-24
MgO - 2-4
TiO2 - 1-3
ZnO - 2-3
R2O, Fe2O, F - Остальное
шихту формируют из 67-73 мас.% муллитсодержащего наполнителя фракции > 0,09 мм, а остальное - мелкодисперсная смесь совместного помола, фракции < 0,01 мм, состава, мас.%:
Спек - 19-44
Глина - 14-20
Муллитсодержащий наполнитель - 42-61
Временная технологическая связка - 5 -12 %, сверх 100%ы

РИСУНКИ

Рисунок 1

MM4A Досрочное прекращение действия патента из-за неуплаты в установленный срок пошлины заподдержание патента в силе

Дата прекращения действия патента: 23.01.2009

Дата публикации: 20.05.2011




 

Похожие патенты:

Изобретение относится к созданию высокоогнеупорных материалов, а именно к технологии получения многокомпонентных покрытий для многоуровневой защиты футеровок конструкций, отдельных устройств и элементов в металлургических печах, химических реакторах и др

Изобретение относится к производству теплоизоляционных изделий, содержащих керамические волокна и предназначенных для изготовления изделий для футеровки тепловых агрегатов

Изобретение относится к производству огнеупорных изделий, а именно к составам, используемым для изготовления огнеприпаса (капселей, коробов, стаканов, лодочек и др.) при обжиге керамических изделий, в том числе керамических длинномерных стержней сложной конфигурации, необходимых при литье по выплавляемым моделям из жаропрочных сплавов, например лопаток для авиационных двигателей

Изобретение относится к области создания пористых высокоогнеупорных муллитовых материалов и изделий из них и может быть использовано при производстве строительных материалов для черной и цветной металлургии, теплоэнергетического комплекса, химической и нефтеперерабатывающей промышленности и других отраслей хозяйства
Изобретение относится к технологии огнеупоров, которые могут использоваться в черной и цветной металлургии, в стекловаренной, химической и других отраслях промышленности

Изобретение относится к способам получения поликристаллических керамических материалов на основе двойных оксидов и может быть использовано в огнеупорной промышленности, металлургии, энергетике, химии, машиностроении, медицине и т.п

Изобретение относится к способам по- лучения поликристаллических керамических материалов на основе двойных оксидов и может быть использовано в огнеупорной промышленности, металлургии, энергетике, химии, машиностроении, медицине и т.п

Изобретение относится к производству высокоогнеупорных материалов и может быть использовано при производстве футеровочных и ремонтных работ в высокотемпературных тепловых агрегатах в черной и цветной металлургии, химической и коксохимической промышленности, строительной индустрии

Изобретение относится к огнеупорным алюмосиликатным материалам, а именно к огнеупорным муллитовым материалам со стехиометрическим соотношением указанных оксидов, соответствующих химической формуле 3Al2O3SiO2, и может широко использоваться в промышленности для изготовления огнеупорных футеровочных покрытий и изделий

Изобретение относится к области производства формованных керамических материалов, которые могут быть использованы при добыче жидких и газообразных текучих сред из буровых скважин в качестве расклинивающего агента
Изобретение относится к области химической технологии и материаловедения

Изобретение относится к составу огнеупорного мертеля, предназначенного для изготовления крупногабаритных углеродсодержащих огнеупорных изделий, приготовления кладочных растворов при выполнении футеровки тепловых агрегатов

Изобретение относится к металлургической промышленности, в частности к изготовлению муллитокорундовых тиглей для плавки стали и жаропрочных сплавов, охлаждаемых лопаток авиационных двигателей, а также огнеупорных капселей

Изобретение относится к способам получения волокнистого муллита и может быть использовано для производства волокнистого муллита из топазового концентрата
Изобретение относится к способам получения исходных композиционных порошков для жаропрочных керамических материалов, предназначенных для изготовления химически стойких высокотемпературных изделий, в частности, композиционного материала муллит - оксид циркония

Изобретение относится к установкам высокотемпературной обработки топазового концентрата для получения муллита и может быть использовано в промышленности при производстве керамических, огнеупорных и строительных материалов, а также в химической промышленности
Изобретение относится к области химической технологии и материаловедения
Наверх