Способ осаждения пироуглеродных покрытий на изделия в кипящем слое

 

Изобретение относится к получению углеграфитовых керамических изделий с пироуглеродными покрытиями в химической технологии, атомной и электронной промышленности. Задачей технического решения является повышение равномерности и качества пироуглеродных покрытий на керамических изделиях. Изделия с характерным размером d смешивают в кипящем слое со сферическими частицами двухфракционного состава при объемном соотношении изделия : крупные частицы : мелкие частицы, равном 1,0:(0,2-0,3):(0,1-0,2), размеры частиц выбирают в пределах 0,l-0,2d и 0,01-0,05d соответственно, плотность сферических частиц выбирают в пределах 1,5-4,0 плотности изделий, а концентрацию углеводородов во времени уменьшают ступенчато с 40-70 до 10-30 об.% по истечении 0,1-0,3 , где - общее время процесса осаждения. Изобретение обеспечивает возможность осаждения покрытий на изделиях сложной конфигурации по достижении прочной связи покрытия с подложкой. 5 ил.

Изобретение относится к области получения углеграфитовых керамических изделий и может быть использовано в химической технологии, атомной и электронной технике.

Углеграфитовые материалы с пироуглеродными и карбидокремниевыми покрытиями обладают высокой термопрочностью, а также являются надежными защитными барьерами при диффузии осколков деления в тепловыделяющих элементах (твэлах) ядерных реакторов (см. Черников А.С. Топливо и твэлы ВТГР. - Атомная энергия, 1998, т.65, вып.1, с.32-38).

Кроме того, указанные материалы могут быть защитными барьерами при хранении отработанных высокорадиоактивных отходов (ВАО). При этом контейнер для захоронения ВАО может представлять собой полую сферу, цилиндр, диск и т.д. Перед размещением ВАО в такие контейнеры отработанное топливо выдерживают для распада короткоживущих изотопов, отгоняют газообразные продукты деления и далее в виде оксидов карбидов или других соединений фракционируют до сферических частиц диаметром 0,5-5,0 мм. После указанной предварительной обработки ВАО размещают, например, в сферических (цилиндрических) контейнерах, плотно закрывают крышкой и направляют на операцию осаждения защитных покрытий.

Существенным недостатком отмеченных способов является то, что в местах закрепления изделий не осуществляется идентичная всему изделию термообработка и не осаждается защитное покрытие с требуемыми характеристиками.

Применительно к капсулированию, например ВАО, последнее является решающим недостатком. Это связано прежде всего с пониженными удерживающими радионуклиды параметрами в местах закрепления изделий, а также с повышенными напряжениями в этих участках из-за несогласованности характеристик покрытий, повышающими вероятность возникновения нежелательных трещин, сколов и т.п. в процессе эксплуатации контейнера.

Для устранения отмеченных недостатков авторы настоящего технического решения нашли, что покрываемые изделия в кипящем слое частиц должны совершать хаотические движения для обеспечения равномерности покрытия. Дело в том, что изделия, имеющие резко отличающиеся от единицы отношением диаметра к высоте d/h (цилиндры с d/h<1, диски с d/h>1), совершают в кипящем слое регулярные, а не хаотические движения. Например, цилиндры ориентируются высотами по направлению потока и тем самым нижние части цилиндров покрываются более толстым слоем пироуглерода, чем верхние.

Наиболее близким по технической сущности к решаемой задаче является способ осаждения пироуглеродных покрытий плотностью 1,7-2,0 г/см3 при температуре пиролиза 1200-1600oС из ацетилен-пропилен-аргоновой смеси с содержанием в последней 13,65-28,0 об.% пропилена и 25,35-52,0 об.% ацетилена, содержание которых в сумме составляет 39-80 об.% (см. патент США, М кл. С 23 С 11/00, 4194027 от 18.03.80, взятый авторами за прототип).

Однако данный способ, как показали эксперименты, проведенные авторами, не позволяет получить равномерное покрытие, например, на цилиндрах с отношением высоты к диаметру более 5.

В основу настоящего изобретения положена задача повышения равномерности и качества пироуглеродных покрытий на керамических изделиях.

Согласно изобретению эта задача решается тем, что в зону пиролиза в кипящем слое подают смесь углеводорода и инертного газа, причем изделия с характерным размером d смешивают в кипящем слое со сферическими частицами двухфракционного состава при объемном соотношении изделия : крупные частицы : мелкие частицы, равном 1,0: (0,2-0,3):(0,1-0,2), размеры частиц выбирают в пределах 0,1-0,2d и 0,01-0,05d соответственно плотность сферических частиц выбирают в пределах 1,5-4,0 плотности изделий, а концентрацию углеводородов во времени уменьшают ступенчато с 40-70 об.% до 10-30 об.% по истечении 0,1-0,3 , где - общее время процесса осаждения при постоянном общем расходе смеси.

Экспериментально установлено, что применение частиц монофракционного состава не позволяет перевести покрываемое изделие в состояние, обеспечивающее равномерность покрытия на изделия. При этом изделие было неподвижным и располагалось на газораспределителе аппарата кипящего слоя, а частицы витали над его поверхностью.

При использовании двухфракционного состава частиц при объемном соотношении изделия : крупные частицы : мелкие частицы, равном 1,0: (0,2-0,3): (0,1-0,2), и размерах частиц крупной фракции 0,1-0,2 и мелкой 0,01-0,05d (где d - характерный размер покрываемого изделия) наблюдалось устойчивое динамическое состояние покрываемых изделий, когда они были окружены (омывались) частицами мелкой и крупной фракций. Увеличение объемного содержания частиц крупной и мелкой фракции по сравнению с указанными пределами нецелесообразно, так как это ведет к увеличению поверхности осаждения покрытий и уменьшению эффективности процесса наращивания слоя на изделиях.

При этом размеры частиц, обеспечивающих устойчивое динамическое состояние изделий в кипящем слое, были определены в пределах 0,1-0,2d и 0,01-0,05d для крупной и мелкой фракций соответственно.

Плотность частиц определена в пределах 1,5-4,0 плотности изделий. Меньшие значения этой плотности приводили к уносу частиц за пределы реакционного пространства, а большие - к сегрегации частиц, препятствующей переводу изделий в динамическое состояние, обеспечивающее благоприятные условия для осаждения покрытий с удовлетворительными характеристиками.

Существующие в настоящее время графитовые материалы (30ПГ, ГМЗ и др.) обладают пористостью в пределах 20-30% по отношению к теоретической плотности монокристаллов графита. При этом открытая пористость данных материалов составляет от 5,0 до 10,0% от общей пористости материала. Таким образом, углеграфитовые материалы не могут быть надежным диффузионным барьером не только по отношению к твердым, но и газообразным радионуклидам. С этой точки зрения роль пироуглеродных покрытий на углеграфитовых материалах является определяющей для создания надежного диффузионного барьера по отношению к радионуклидам.

По данному способу пироуглеродные покрытия с требуемой плотностью и характеристиками структуры осаждают при фиксированных значениях концентрации углеводородов и температуры, выбираемых из указанных выше соотношений параметров.

Получаемые при этом покрытия равномерно осаждаются на поверхность без проникновения пироуглерода в поры подложки.

При таких условиях реализуется менее прочная подложка с покрытием, чем в случае, когда начальная стадия осаждения пироуглерода осуществляется в порах подложки с последующим выходом на поверхность изделия.

Предлагаемый способ, отличающийся от известного ступенчатым уменьшением концентрации углеводорода по мере осаждения пироуглеродных покрытий, поясняется нижеследующими примерами и иллюстрируется фигурами 1-5: фиг.1 - срез внешнего вида цилиндрических и трубчатых изделий; фиг.2 (а, б) - микроструктура пироуглерода на изделиях; фиг.3 (а, б) - уплотнение графита; фиг.4 - зона уплотнения пироуглерода; фиг.5 - внешний вид изделий различной конфигурации.

Пример 1. На графитовые цилиндрические и трубчатые изделия диаметром 4-5 мм и высотой 20 мм (фиг.1) в количестве 200 шт. осаждали пироуглеродные покрытия при объемном соотношении изделия : крупные частицы : мелкие частицы 1,0: 0,25: 0,15, размерах крупной фракции 3,0 мм (0,15d) и мелкой 0,3-0,5 (0,15-0,25d) мм и плотностью частиц 3,5 г/см3. При этом наблюдали устойчивое псевдожижение частиц и витание изделий, омываемых частицами мелкой и крупной фракций. Пиролиз пропилена (С3Н6) в смеси с аргоном осуществляли при температуре 1350oС и концентрации С3Н6 в смеси 20 об.%. Время процесса составляло 30 мин. Получены пироуглеродные покрытия плотностью 1,85-1,90 г/см3 с гомогенной структурой. Однако покрытия осаждались только на поверхности изделий без проникновения в поры графитового материала (фиг.2).

Пример 2. Условия псевдоожижения изделий были аналогичны примеру 1. Пиролиз пропилена осуществляли при температуре 1350oС, концентрация СзН6 на начальной стадии составляла 55 об.% в течение 3 мин, а далее уменьшалась ступенчато до 20 об.% и в течение 27 мин при неизменной температуре осаждалось покрытие.

Получены пироуглеродные покрытия плотностью 1,85-1,90 г/см3 с гомогенной структурой. Покрытие при этом осаждалось не только на поверхности, но и в порах материала изделий (фиг.3).

Пример 3. Условия псевдоожижения изделий аналогичны примеру 1, а условия осаждения пироуглеродных покрытий - примеру 2 за исключением длительности первой стадии пиролиза (9 мин) при общем времени процесса 30 мин.

Найдено, что глубина уплотнения материала при этом увеличивается (фиг. 4). Однако дальнейшее увеличение продолжительности этой стадии нецелесообразно из-за существенного накопления сажевых продуктов пиролиза, мешающих ведению процесса осаждения покрытий.

Преимущества предлагаемого способа осаждения пироуглеродных покрытий в кипящем слое по сравнению с известным заключаются прежде всего в возможности получения покрытий на изделиях сложной конфигурации и отличающихся своими размерами (фиг.5), а также получением покрытий, достаточно прочно связанных с подложкой, что должно свидетельствовать о высоких эксплуатационных характеристиках изделий на их основе.

Формула изобретения

Способ осаждения пироуглеродных покрытий на изделия в кипящем слое, включающий подачу в зону пиролиза смеси углеводорода и инертного газа, отличающийся тем, что изделия с характерным размером d смешивают в кипящем слое со сферическими частицами двухфракционного состава при объемном соотношении изделия: крупные частицы: мелкие частицы, равном 1,0:(0,2-0,3): (0,1-0,2), размеры частиц выбирают в пределах 0,1-0,2 d и 0,01-0,05 d соответственно, плотность сферических частиц выбирают в пределах 1,5-4,0 плотности изделий, а концентрацию углеводорода во времени уменьшают ступенчато с 40-70 до 10-30 об. % по истечении 0,1-0,3 , где - общее время процесса осаждения, при постоянном общем расходе смеси.

РИСУНКИ

Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4, Рисунок 5



 

Похожие патенты:

Изобретение относится к области химического осаждения из паровой фазы и, в частности, к плазмостимулированному химическому осаждению из парозой фазы высококачественных пленок алмазоподобного углерода на частично ограниченные поверхности или поверхности с высокой степенью угловатости

Изобретение относится к формированию покрытия из аморфного углерода с полимерной тенденцией на субстрат из полимерного материала, имеющего форму сосуда, который необходимо получить, такого как бутылка или флакон, с использованием плазмы, возбуждаемой посредством электромагнитных волн

Изобретение относится к высокотемпературным композиционным материалам, полученным инфильтрацией газовой фазы химического вещества и осаждением матрицы связующего материала в пористой структуре

Изобретение относится к области модификации поверхности материалов и может быть использовано для улучшения служебных характеристик диэлектрических листовых и рулонных материалов

Изобретение относится к технологии получения углеродных материалов осаждением из газовой фазы слоев пиролитического углерода с высокой степенью упорядоченности кристаллической структуры на поверхности различных материалов
Изобретение относится к области микроэлектроники и может быть использовано для создания углеродсодержащих покрытий с новыми уникальными свойствами

Изобретение относится к материаловедению, к защите материалов от внешних и агрессивных воздействий, в частности к покрытию рабочей поверхности солнечного фотоэлектрического элемента (СФЭ) для защиты от химического, радиационного и механического разрушения

Изобретение относится к нанесению покрытий в псевдоожиженном слое, в частности к устройству для осаждения покрытий в псевдоожиженном слое

Изобретение относится к процессу, например химической инфильтрации или химического осаждения из паровой фазы или цементации, осуществляемому в печи

Изобретение относится к технологии получения частиц с монокристаллической структурой алмаза путем выращивания из паровой фазы в условиях плазмы

Изобретение относится к пластмассовой таре, имеющей внутреннюю поверхность стенки, покрытую алмазоподобной углеродной пленкой, устройству для получения тары и способу изготовления тары

Изобретение относится к устройству для изготовления пластмассовой тары, покрытой алмазоподобной углеродной пленкой

Изобретение относится к способу контроля или моделирования процесса уплотнения по меньшей мере одного пористого субстрата пиролитическим углеродом путем химической инфильтрации газовой фазой, в соответствии с которым помещают в печь партию из одного или более субстратов, подлежащих уплотнению, нагревают указанный субстрат, подают в печь реакционный газ, содержащий по меньшей мере один углеводород, являющийся источником углерода, устанавливают в печи давление, при котором реакционный газ способен диффундировать в поры нагретого субстрата с образованием в них осадка пиролитического углерода, и выпускают из печи отработанный газ через выпускную трубу, соединенную с выходным отверстием печи

Изобретение относится к микроструктурным технологиям, а именно к нанотехнологии, в частности к способу получения волокнистых углеродных наноматериалов, состоящих из углеродных нанотрубок, методом химического осаждения из газовой фазы

Изобретение относится к устройствам для производства углеродных нанотрубок
Наверх