Интегральный микронасос

 

Использование: в интегральной электронике и микросистемной технике, при производстве микрокапиллярных устройств, использующих электрогидродинамический эффект. Сущность изобретения: в интегральный микронасос, содержащий электрод, представляющий собой полупроводниковую пластину сетчатой структуры с V-образными отверстиями по всей ее толщине, и изолирующий слой, введены металлический слой, являющийся вторым электродом, а изолирующим слоем является диэлектрическая пленка, разделяющая электроды, толщина которой определяет рабочий зазор между электродами, причем в диэлектрической пленке и металлическом слое выполнены сквозные отверстия, соответствующие узкой части V-образного отверстия. Техническим результатом изобретения является уменьшение габаритов и повышение производительности устройства. 4 ил.

Изобретение относится к области интегральной электроники и микросистемной техники, а более конкретно - к микрокапиллярным устройствам, использующим электрогидродинамический эффект.

Известна конструкция микронасоса термопневматического принципа действия, изготовленного с использованием LIGA-технологии (см. В.А. Колесников, Т.Я. Рахимбабаев. Микрожидкостные системы и их реализация с использованием LIGA-технологии, журнал "Микросистемная техника", 1, 1999 г., с.15-21, рис.2). Конструкция микронасоса (фиг. 1) содержит полупроводниковую пластину (1), входной и выходной клапаны (2, 3), пропускающие поток жидкости в одном направлении, титановый провод (4), рабочий объем (5) с мембраной (6), насосную камеру (7), электроды (8).

Признаками данного аналога, общими с заявляемым устройством, являются наличие полупроводниковой пластины и электродов.

Причиной, препятствующей достижению технического результата, является сложность конструкции, а также использование редкоземельных, дорогостоящих материалов (титан).

Известен интегральный микронасос, потребляющий малую мощность при напряжении питания 2,3 В (см. Kwang-Seor Yun, and other. "A Micropump Driven by Continuous Electrowetting Actuation for Low Voltage and Power Operations". Proc. of the 14-th IEEE MEMS 2001, Technical Digest, Orlango, Florida, USA, p. p. 487-490). Конструкция микронасоса (фиг.2) содержит полупроводниковую пластину из прорезиненного кремния (1), входную и выходную мембраны (2, 3), входной и выходной медные клапаны (4, 5), кремниевый канал (6), рабочую область (7), заполненную электролитом, в которой находится капелька ртути (8), платиновые электроды (9).

Признаками данного аналога, общими с заявляемым устройством, являются наличие полупроводниковой пластины и электродов.

Причиной, препятствующей достижению технического результата, является сложность конструкции, а также использование "прорезиненного" кремния, использование вредных (ртуть) и дорогостоящих (платина) материалов.

Из известных наиболее близким по технической сути к заявляемому объекту является кремниевый микронасос (см. А. Рихтер. Кремниевый микронасос - новое достижение микрообработки, "Электроника (Electronics)" 8 (837), 1990 г. с. 7-8).

Прототип представляет собой кремниевый микронасос (фиг.3), состоящий из двух электродов (1, 2), размещенных один над другим и представляющих собой две полупроводниковые пластины с V-образными отверстиями (4), образующими сетчатую структуру. Электроды разделены изолирующим слоем (3), представляющим собой изолирующую прокладку.

Насос не содержит никаких движущихся частей, не изнашивается, обладает высокой надежностью и прост в изготовлении.

Признаками данного прототипа, общими с заявляемым устройством, являются наличие электрода, представляющего собой полупроводниковую пластину с V-образными отверстиями, образующими сетчатую структуру, и изолирующего слоя.

Причиной, препятствующей достижению технического результата является необходимость совмещения двух сетчатых электродов между собой. Указанные обстоятельства ограничивают минимальные предельные размеры устройства и уменьшают производительность.

Задачей, на решение которой направлено предлагаемое изобретение, является уменьшение габаритов микронасоса и повышение производительности устройства.

Для достижения поставленной цели в микронасосе, содержащем электрод, выполненный из полупроводниковой пластины, представляющей собой сетчатую структуру с V-образными отверстиями по всей ее толщине, и изолирующий слой, вторым электродом является металлический слой, а изолирующим слоем является диэлектрическая пленка, разделяющая электроды, толщина которой определяет рабочий зазор между электродами, причем в диэлектрической пленке и металлическом слое выполнены сквозные отверстия, соответствующие узкой части V-образного отверстия.

На фиг.4 приведены топология (а) и структура (б) интегрального микронасоса.

Интегральный микронасос содержит полупроводниковую пластину (1), представляющую собой сетчатую структуру с V-образными отверстиями (4) по всей ее толщине, переходящими своей узкой частью в сквозные отверстия (5) в диэлектрическую пленку (2) и металлический слой (3).

Если этот микронасос поместить в трубку, с одной стороны которой подать полярную жидкость (содержащую ионы или диполи) и на полупроводниковую пластину (1) и металлический слой (3), разделенные диэлектрической пленкой (2), приложить напряжение, то в результате взаимодействия между неоднородным высоким электрическим полем, возникающим между узкой частью V-образного отверстия (4) и металлическим слоем (3), и ионами или диполями жидкости, возникнут силы, действующие на частицы жидкости, что приведет к возникновению движения жидкости через сквозные отверстия (5) в одном направлении.

Интегральный микронасос содержит, в отличие от прототипа, в качестве изолирующего слоя диэлектрическую пленку, толщина которой определяет рабочий зазор между полупроводниковой пластиной и металлическим слоем, причем его уменьшение позволяет снизить рабочее напряжение в зазоре при той же напряженности поля, т.е. повысить производительность устройства в 1,5-3 раза. А использование металлического слоя позволяет избежать совмещения и фиксации электродов.

Формула изобретения

Интегральный микронасос, содержащий электрод, выполненный из полупроводниковой пластины, представляющей собой сетчатую структуру с V-образными отверстиями по всей ее толщине, и изолирующий слой, отличающийся тем, что вторым электродом является металлический слой, а изолирующим слоем является диэлектрическая пленка, разделяющая электроды, толщина которой определяет рабочий зазор между электродами, причем в диэлектрической пленке и металлическом слое выполнены сквозные отверстия, соответствующие узкой части V-образного отверстия.

РИСУНКИ

Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4



 

Похожие патенты:

Изобретение относится к области сенсорных элементов, а точнее к датчикам газового состава атмосферы
Изобретение относится к композиционным материалам в части порошков с модифицированной поверхностью

Изобретение относится к измерительной технике и может быть использовано для измерения давления в условиях воздействия температур измеряемой среды как в системах автоматического контроля, так и в цифровых приборах специального и универсального назначения

Изобретение относится к композиционным материалам с заданным удельным сопротивлением (удельной электропроводностью) на основе смесей частиц малопроводящих материалов с частицами высокоэлектропроводных углеродных материалов для их применения в электротехнике

Изобретение относится к электронным приборам, в частности к полупроводниковым приборам, и может быть использовано для выпрямления переменного тока и преобразования ВЧ-сигнала в постоянное напряжение в источниках питания радиоаппаратуры, радиоизмерительных приборах и системах

Изобретение относится к электронным приборам, в частности к полупроводниковым приборам, и может быть использовано для выпрямления переменного тока и преобразования ВЧ-сигнала в постоянное напряжение в источниках питания радиоаппаратуры, радиоизмерительных приборах и системах

Изобретение относится к устройствам, основанным на нанотехнологии, таким как нанодиоды и нанопереключатели
Изобретение относится к антифрикционным полимерным композициям на основе полиамидов

Изобретение относится к способу получения дициклопентена (трицикло-[5.2.1.02.6]децена-3), включающему гидрирование дициклопентадиена в растворе водородом в жидкой фазе с использованием тонкодисперсных катализаторов платиновой группы при атмосферном давлении и умеренной температуре (30-80°C) и последующее выделение целевого продукта
Наверх