Способ модифицирования алюминиевых сплавов

 

Изобретение относится к металлургии и может быть использовано при непрерывном литье слитков и фасонном литье из легких сплавов на основе алюминия. Техническим результатом изобретения является повышение пластичности и сопротивляемости трещинообразованию литых алюминиевых сплавов и повышение качества изделий из них. Технический результат достигается тем, что в способе модифицирования литых алюминиевых сплавов, включающем введение в поток расплава легирующих добавок, поток расплава на пути в кристаллизатор подвергают ультразвуковой обработке в режиме развитой кавитации, а легирующие добавки вводят в поток расплава в зоне ультразвуковой обработки расплава. В качестве легирующих добавок используют сплав системы Al-Ti-B, Al-Ti-C. Легирующие добавки вводят в поток расплава в виде лигатурного прутка. Расплав в зоне ультразвуковой обработки дополнительно перемешивают, в частности, наложением электромагнитного поля. 4 з.п. ф-лы, 2 табл.

Изобретение относится к металлургии и может быть использовано при непрерывном литье слитков и фасонном литье из легких сплавов на основе алюминия для самого широкого назначения.

Известен способ модифицирования алюминиевых сплавов, включающий ультразвуковую обработку расплава (см. Г.И. Эскин. "Ультразвуковая обработка расплавленного алюминия", М. Металлургия, 1988).

Недостатком этого способа является низкая пластичность и сопротивляемость трещинообразованию из-за относительно невысокого эффекта измельчения зеренной структуры слитка.

Известен способ модифицирования алюминиевых сплавов, включающий введение в поток расплава легирующих добавок системы Al-Ti-B или Al-Ti-C (см. Бондарев Б.И., Напалков В.И., Тарарышкин В.И. "Модифицирование алюминиевых деформируемых сплавов", М. Металлургия. 1979) - прототип.

Недостатком этого способа является низкая пластичность и сопротивляемость трещинобразованию из-за неравномерной литой структуры по сечению и относительно крупного зерна.

Технический результат - повышение пластичности и сопротивления трещинообразованию литых алюминиевых сплавов и, как следствие, повышение качества изделий из них.

Технический результат достигается тем, что в способе модифицирования литых алюминиевых сплавов, включающем введение в поток расплава легирующих добавок, поток расплава на пути в кристаллизатор подвергают ультразвуковой обработке в режиме развитой кавитации, а легирующие добавки вводят в поток расплава в зоне ультразвуковой обработки расплава.

Легирующие добавки вводят в поток расплава в виде лигатурного прутка.

Поток расплава в зоне ультразвуковой обработки дополнительно перемешивают.

В качестве легирующих добавок используют сплав системы Al-Ti-B, Al-Ti-C.

Перемешивание потока расплава в зоне ультразвуковой обработки ведут наложением электромагнитного поля.

Обработка потока расплава ультразвуком ведет к образованию кавитационной зоны, в которую и вводят легирующие добавки.

Под действием акустической кавитации происходит активное растворение легирующих добавок и диспергирование содержащихся в сплаве алюминидов титана, тиборидов и карбидов алюминия с образованием большого числа зародышей кристаллизации, которые равномерно распределяются по всему объему слитка (отливки).

За счет этого получают слитки и отливки с равномерной мелкозернистой структурой. Это повышает пластичность литого металла и сопротивляемость трещинообразованию, что позволяет повысить качество литого металла и изготовляемых из него изделий.

Пример 1 Получали расплав алюминиевого сплава марки 1973 (состав: 5,7% Zn; 2,15% Mg; 2,0% Сu; 0,10% Zr; 0,12% Fe; 0,04% Si; Al - ост.). Расплав разливали в кристаллизатор непрерывного литья для получения слитка диаметром 178 мм. Проводили ультразвуковую обработку (УЗО) потока расплава в режиме развитой кавитации с помощью одного источника ультразвука. В кавитационную зону в поток расплава вводили легирующие добавки в виде лигатурного прутка состава Al-5%Ti-1%B. Расплав в зоне ультразвуковой обработки перемешивали наложением электромагнитного поля.

Результаты приведены в табл.1.

Как следует из данных табл.1, применение предлагаемого способа позволяет не только максимально измельчить зерно и повысить пластичность слитка, но и воспрепятствовать появлению трещин.

Пример 2 Алюминиевый сплав марки АД31 (состав: 0,3% Fe; 0,5% Si; 0,7% Mg; 0,02% Ti; Al - ост.) разливали в слиток диаметром 145 мм методом непрерывного литья и длиной до 1 м. Проводили ультразвуковую обработку (УЗО) потока расплава на пути в кристаллизатор с помощью одного и двух источников ультразвука с формированием кавитационной зоны разной степени активности. Лигатурный пруток состава Al-3%Ti-1%В вводили в поток расплава (в желобе) в кавитационную зону. В табл.2 представлены результаты измельчения структур в слитках сплава АД31 при введении лигатурного прутка в кавитационную зону в зависимости от количества источников ультразвука.

Из данных табл.2 следует, что применение вместо одного источника ультразвука двух источников ультразвука и соответственно повышение активности кавитационной зоны в потоке расплава, в который вводят лигатурный пруток, позволяет повысить эффективность измельчения структуры слитка малолегированного сплава АЛ31. При этом применение предлагаемого способа способствует также получению равномерного измельчения по сечению слитка.

Таким образом, предлагаемый способ позволяет повысить пластичность литого металла и исключить трещинообразование, поскольку эффективно измельчает структуру по всему сечению слитка или отливки.

Это позволяет повысить качество литого металла и изделий из него.

Формула изобретения

1. Способ модифицирования литых алюминиевых сплавов, включающий введение в поток расплава легирующих добавок, отличающийся тем, что поток расплава на пути в кристаллизатор подвергают ультразвуковой обработке в режиме развитой кавитации, а легирующие добавки вводят в поток расплава в зоне ультразвуковой обработки расплава.

2. Способ по п. 1, отличающийся тем, что в качестве легирующих добавок используют сплав системы Al-Ti-B, Al-Ti-C.

3. Способ по п. 1 или 2, отличающийся тем, что легирующие добавки вводят в поток расплава в виде лигатурного прутка.

4. Способ по любому из пп. 1-3, отличающийся тем, что расплав в зоне ультразвуковой обработки дополнительно перемешивают.

5. Способ по п. 4, отличающийся тем, что расплав в зоне ультразвуковой обработки перемешивают наложением электромагнитного поля.

РИСУНКИ

Рисунок 1, Рисунок 2



 

Похожие патенты:

Изобретение относится к области порошковой металлургии, в частности к способам получения пористых изделий из композиционных материалов методом самораспространяющегося высокотемпературного синтеза (СВС), которые целесообразно использовать для получения фильтрующих материалов

Изобретение относится к области порошковой металлургии, в частности к производству твердых сплавов

Изобретение относится к области цветной металлургии, а именно к получению азотсодержащих лигатур для легирования титановых сплавов методом алюмотермической плавки

Изобретение относится к изготовлению металлокомпозитных материалов, таких, как металлокерамический твердый сплав

Изобретение относится к области металлургии и может быть использовано во многих отраслях промышленности в авиа- и транспортном машиностроении, приборостроении, строительной индустрии и т

Изобретение относится к производству цветных металлов, извлечению меди, никеля, платиновых и благородных металлов из медно-никелевых расплавов

Изобретение относится к области порошковой металлургии, в частности к антифрикционным дисперсно-упрочненным композиционным материалам на основе меди, предназначенным для изготовления подшипников скольжения, работающих в условиях сухого и полусухого трения, в газовых средах, в присутствии абразивных частиц, при повышенных нагрузках и температурах

Изобретение относится к порошковой металлургии, в частности к способам изготовления антифрикционных материалов с твердыми смазками на основе меди, предназначенных для получения деталей триботехнического назначения (самосмазывающихся износостойких подшипников скольжения в узлах трения)

Изобретение относится к цветной металлургии, а именно к производству алюминиево-кремниевого сплава
Изобретение относится к цветной металлургии, в частности к литейному производству и процессам переработки вторичного алюминиевого сырья, и касается составов флюсов для обработки алюминия и его сплавов
Изобретение относится к порошковой металлургии, в частности к фосфорсодержащему порошку и способу его получения
Изобретение относится к области металлургии, в частности к получению алюминиево-скандиевых лигатур, которые могут быть использованы в качестве легирующих и модифицирующих добавок в производстве сплавов на основе алюминия и магния

Изобретение относится к области металлургии, в частности к способу получения композиционных материалов (КМ) на основе армированных интерметаллидов, применяемых в авиационной технике, судостроении, энергетике и др

Изобретение относится к композиционным материалам

Изобретение относится к области конструкционного материаловедения и технической химии, в частности к ячеисто-каркасному материалу с открыто-пористой структурой и способу его получения

Изобретение относится к области металлургии цветных металлов и может быть использовано для производства алюминий-скандиевой лигатуры, применяемой для модифицирования алюминиевых сплавов

Изобретение относится к сплавам на основе магния, в частности к составу магниевых сплавов и способам их получения, которые находят широкое применение в автомобильной промышленности

Изобретение относится к цветной металлургии, в частности к получению сплавов на основе магния, и способам их обработки
Изобретение относится к цветной металлургии, в частности к технологии приготовления алюминиевых кремнийжелезосодержащих сплавов

Изобретение относится к порошковой металлургии, в частности к получению композиционного материала, который можно использовать, например, в полупроводниковых приборах
Наверх