Способ получения безводного сульфата магния

 

Изобретение относится к способам получения безводного сульфата магния в виде высокопористого порошка с большой удельной поверхностью, используемого в качестве водопоглощающего материала. Способ получения порошка безводного сульфата магния включает обезвоживание его кристаллогидрата - семиводного сульфата магния в два этапа. Первый этап проводят в интервале температур 100-180oС, а второй - в интервале температур 500-600oС. Между первым и вторым этапами проводят механохимическую активацию. Изобретение позволяет получить продукт с содержанием влаги не выше 0,5 мас.%, повысить его активность. 2 з.п. ф-лы, 1 табл.

Изобретение относится к способам получения безводного сульфата магния в виде высокопористого порошка с большой удельной поверхностью и содержанием влаги не более 0,5 мас.%, применяемого в качестве водопоглощающего реагента в процессах органического синтеза, в частности в технологии синтеза катализатора полимеризации этилена.

Известны способы получения безводного сульфата магния (БСМ) обезвоживанием эпсомита (MgSО47H2О) путем прокаливания при 200oС (Б.В. Некрасов. Основы общей химии, "Химия", М., 1973, т.2, с. 121) или в интервале 210-240oС (Лабораторная техника органической химии, под ред. Б. Кейла, "Мир", М. , 1966, с. 573). Оба способа имеют следующие существенные недостатки: 1) содержание воды в готовом продукте составляет 5-10 мас.% даже при длительной (свыше 5 часов) термообработке; 2) в процессе термообработки происходит спекание частиц реакционной массы с образованием твердых стеклоподобных кусков, с трудом поддающихся измельчению в дробилках и мельницах. Частицы после помола не имеют пористости.

Описан способ обезвоживания эпсомита термообработкой при 300oС и пониженном давлении (А. Вайсбергер, Э. Проскауэр, Дж. Риддик, Э. Тупс. Органические растворители. Физические свойства и методы очистки. ИЛ, М., 1958, с. 263). Получаемые по этому способу "частицы сульфата магния легко летучи, пористы и довольно хрупки", т.е. в процессе термообработки не происходит спекание массы. Однако этот способ не позволяет получить готовый продукт с содержанием влаги менее 4 мас.%. Кроме того, проведение термообработки под вакуумом резко осложняет технологию и аппаратурное оформление процесса.

Наиболее близким к предлагаемому в настоящей заявке способу получения безводного сульфата магния (БСМ) является способ, осуществляемый в виде следующих двух последовательных стадий (М.Е. Позин. Технология минеральных солей, ч.1, "Химия", Л., 1974, с. 302): 1. На первой стадии эпсомит (MgSО47H2О) подвергают термообработке при температуре ниже 70oС. Продуктом этого процесса считается кизерит (MgSО4H2О).

2. На второй стадии обезвоживание кизерита осуществляют во вращающихся печах, обогреваемых дымовыми газами. Процесс начинают при 200oС и заканчивают при 440oС.

Основные недостатки способа - прототипа: высокое содержание остаточной влаги, около 2 мас.% (ТУ 6-09-27-131-88); спекание частиц реакционной массы в процессе термообработки при 200-440oС требует последующего измельчения. Готовый продукт имеет низкую пористость частиц и, как следствие, малоэффективен в качестве водопоглощающего реагента в процессах органического синтеза.

Предложен новый способ получения высокопористого порошка безводного сульфата магния обезвоживанием 7-водного сульфата магния нагреванием его в два этапа: первый в интервале температур 100-180oС, второй - в интервале температур 500-600oС, причем предпочтительным является интервал температур 540-160oC, с проведением механохимической активации между этапами термообработки.

Проведение процесса заявляемым способом позволяет получить порошкообразный продукт с содержанием примеси влаги на уровне не выше 0,5 мас.%. Неочевидным преимуществом заявляемого способа является повышение активности получаемого порошка сульфата магния при проведении процесса синтеза катализатора полимеризации. Она достигает 102-110% от стандарта.

Процесс проводят следующим способом: в реактор загружают исходный 7-водный сульфат магния, прогревают продукт до температуры в интервале 100-180oС, выгружают и подвергают механохимической активации путем интенсивного перетирания. Затем перетертый продукт выдерживают при температуре в интервале 500-600oС, выгружают и упаковывают в герметичную тару.

Пример 1.

Навеску 7-водного сульфата магния массой 1 кг загружают в реактор и нагревают до температуры 120oС в течение 1 часа. Полученный продукт подвергают перетиранию в мельнице, а затем порошок термообрабатывают при 520oС в течение 2 часов. Получают 0,49 кг безводного сульфата магния с содержанием примеси влаги 0,27 мас.%. Выход продукта 96,3 мас.%. Активность сульфата магния при синтезе катализатора - 102% от стандарта.

В таблице представлены результаты примеров, проведенных аналогично примеру 1 при изменении параметров процесса.

Формула изобретения

1. Способ получения порошка безводного сульфата магния обезвоживанием его кристаллогидрата - семиводного сульфата магния при повышенной температуре, отличающийся тем, что процесс обезвоживания проводят в два этапа, причем первый - в интервале температур 100-180oС, а второй - в интервале температур 500-600oС, а между первым и вторым этапами проводят механохимическую активацию порошка.

2. Способ по п. 1, отличающийся тем, что первый этап проводят предпочтительно при 150-160oС.

3. Способ по пп. 1 и 2, отличающийся тем, что второй этап проводят предпочтительно при 540-580oС.

РИСУНКИ

Рисунок 1



 

Похожие патенты:
Изобретение относится к неорганической химической технологии соединений магния, в частности к способу получения моногидрата сульфата магния
Изобретение относится к способам получения сульфата магния, используемого в сельском хозяйстве, в производстве синтетических моющих средств, а также в других отраслях промышленности

Изобретение относится к способам очистки минеральных солей, в частности, сульфата магния от примесей марганца и железа

Изобретение относится к способам очистки кизерита, концентрированного электростатическим путем в несколько ступеней в присутствии кондиционирующего средства

Изобретение относится к технологии получения магнезиальных вяжущих, в частности сульфата магния, применяемого в металлургической и кожевенной промышленности, а также при изготовлении строительных материалов и каменного литья

Изобретение относится к способам получения соединений калия и магния из полиминеральной лангбейнитовой руды
Изобретение относится к области магнезиальных вяжущих и может быть использовано при производстве строительных материалов, в том числе бетонов с органическими наполнителями
Изобретение относится к области неорганической химии и может быть использовано при переработке полигалитовых руд на шенит

Изобретение относится к области химии. Отходы серной кислоты при синтезе 2,2'-дихлордиэтилформаля производства полисульфидного полимера, содержащие примеси этиленхлоргидрина и параформальдегида, обрабатывают гидроксидом магния до получения среды с кислотностью рН=6,5-7,0, из которой декантацией отделяют примеси этиленхлоргидрина и параформальдегида с возможностью рециклирования их в синтезе 2,2'-дихлордиэтилформаля. Оставшийся водный раствор образовавшегося сульфата магния после разбавления его водой до концентрации 200-270 г/дм3 направляют на стадию поликонденсации производства полисульфидного полимера для его использования в качестве диспергатора. Изобретение позволяет экономить сырьевые ресурсы и предотвращает загрязнение окружающей среды высокотоксичными отходами. 1 пр.

Изобретение может быть использовано химической промышленности. Способ получения двойного сульфата и раствора хлористого водорода включает приготовление раствора из хлорида, содержащего один из катионов двойного сульфата, и гидросульфата, содержащего второй из катионов двойного сульфата, и осаждение из раствора двойного сульфата. Осаждение ведут до удаления из раствора сульфат-иона с одновременным получением раствора хлористого водорода. В качестве гидросульфата, содержащего первый из катионов двойного сульфата, используют гидросульфат натрия, или гидросульфат калия, или гидросульфат аммония, или гидросульфат рубидия, или гидросульфат цезия. В качестве хлорида, содержащего второй из катионов двойного сульфата, используют хлорид магния, или хлорид алюминия, или хлорид никеля, или хлорид хрома, или хлорид кобальта, или хлорид марганца, или хлорид меди, или хлорид железа, или хлорид кадмия, или хлорид цинка. Изобретение позволяет одновременно получать двойные сульфаты и разбавленный раствор технической соляной кислоты или раствор для выщелачивания руд или производства газообразного хлористого водорода. 7 з.п. ф-лы, 1 табл., 5 пр.

Изобретение может быть использовано в химической промышленности. Для получения сульфата магния и железооксидных пигментов из отходов производств осуществляют взаимодействие тонкодисперсного магнийсодержащего сырья с сернокислым отработанным травильным раствором, содержащим сульфат железа. В качестве магнийсодержащего сырья используют доломитовую пыль, образующуюся при прокаливании доломита при температуре 600-750°С. Соотношение сульфат-ионы : доломитовая пыль в травильном растворе составляет 1:1,1. Проводят гидротермальную обработку полученной суспензии, продувая раствор воздухом, кислород которого окисляет железо Fe+2 в Fe+3. Осадок отделяют на фильтр-прессе и отмывают от водорастворимых соединений. Проводят термообработку осадка в железооксидный пигмент. Сушку и измельчение железооксидного пигмента осуществляют одновременно в комбинированной распылительной сушилке. Отделенный на фильтр-прессе фильтрат и промывную воду, содержащие сульфат магния, подают в реактор. Повышают в растворе содержание сульфат-ионов до 35-40% добавкой концентрированной серной кислоты и проводят нейтрализацию доломитовой пылью при температуре 80-100°С до pН, равного 7,0-7,5. Кристаллизацию сульфата магния проводят в кристаллизаторе. Изобретение позволяет повысить выход сульфата магния и железооксидных пигментов, снизить энергозатраты при переработке сернокислого отработанного травильного раствора. 1 з.п. ф-лы, 1 ил., 2 табл., 3 пр.
Наверх