Газогенератор для буровзрывных работ

 

Изобретение относится к горным работам, осуществляемым, например, при разрушении негабаритных камней и валунов, сооружений из кирпича, бетона, отбойке штучного камня и блоков, проходке туннелей, и может быть использовано в процессе добычи полезных ископаемых, драгоценных и полудрагоценных камней. Газогенератор включает корпус и размещенный в нем горючий реагент, который выполнен в виде устройства со сквозными каналами, ориентированными вдоль его оси, при этом толщина стенки канала характеризуется зависимостью, согласно которой эта величина выбирается как частное от деления произведения экспериментального коэффициента на насыпную (для сыпучего материала) или истинную (для жидкости) плотность используемого окислителя на произведение плотности материала горючего реагента на стехиометрическое соотношение между массой окислителя и горючего элемента, а площадь поперечного сечения канала равна произведению экспериментального коэффициента на толщину стенки канала в квадрате, при этом соотношение окислителя к горючему реагенту составляет от 3 до 50. Изобретение позволяет снизить трудоемкость изготовления газогенерата при одновременном повышении производительности его работы. 11 з.п. ф-лы, 12 ил.

Изобретение относится к горным работам, осуществляемым, например, при разрушении негабаритных камней и валунов, сооружений из кирпича, бетона, отбойке штучного камня и блоков, проходке туннелей, и может быть использовано в процессе добычи полезных ископаемых и драгоценных и полудрагоценных камней.

Известно использование для проведения буровзрывных работ взрывчатого вещества (ВВ) [1]. Из-за бризантности ВВ в отбиваемом блоке и коренной породе образуются трещины, что снижает качество блоков, при этом повышается опасность работ.

Известен газогенератор, содержащий реагенты с бездетонационной реакцией разложения [2]. Использование такого газогенератора значительно улучшает качество получаемого материала. В известном решении газогенератор содержит горючий реагент в виде концентрированного пероксида водорода, гидразина, гидразингидрата, окиси этилена или паст на их основе.

Применение гидразина и гидразингидрата крайне нежелательно из-за их ядовитого воздействия. Гидразин и гидразингидрат являются канцерогенами первого класса опасности, достаточно дороги и в недалеком будущем станут просто недоступны.

При использовании окиси этилена возможно образование детонационной смеси с кислородом воздуха, что значительно снижает безопасность работ и соответственно ухудшает качество получаемой продукции.

При использовании пероксида водорода в ходе процесса, инициируемого запалом или катализатором, он разлагается в соответствии с реакцией Однако энергетика процесса значительно ниже, чем при горении штатных ВВ. Так, для 80% пероксида водорода выделяется 296 кДж/кг, тогда как для ВВ - 730 кДж/кг.

Известен газогенератор для буровзрывных работ, содержащий горючий реагент, выполненный в виде макроразмерного элемента из горючего полимерного материала из группы, включающей полиолефин, полиамид, поливинилхлорид и их производные, а также металлические материалы [3]. Макроразмерным элементом согласно известному изобретению является элемент с достаточно большими размерами (порядка 100-200 мм), а также порошок, представляющий собой смесь макроразмерных элементов (частиц с размерами в диапазоне 0,025-3,0 мм).

Горючий реагент может быть выполнен, например, в виде порошка, гранул, трубок, лент, в том числе гофрированных, пористых губчатых тел с открытой пористостью и других форм, обеспечивающих контакт с целевым реагентом. Для изготовления горючего реагента может быть использовано как первичное, так и вторичное сырье. Окислителями являются такие соединения, как, например, хлорноватистый натрий, гидрокарбонат аммония, карбонат натрия.

Газогенератор с горючим реагентом, предварительно смешанным с окислителем в необходимой пропорции при нормальных условиях на специальном оборудовании, размещают в шпуре и инициируют взрыв.

Однако необходимо заметить, что при использовании известного газогенератора не всегда достигается равномерное распределение окислителя в горючем реагенте. Это связано с тем, что пространство между частями горючего реагента - трубками или частицами (в т. ч. комками частиц) может быть в ряде случаев недоступно для окислителя. В итоге воспламенение состава происходит неодновременно по сечению газогенератора, что снижает качество продукции.

В качестве недостатка известного решения можно указать и высокую трудоемкость изготовления газогенератора, связанную с особенностями подготовки и загрузки горючего реагента в газогенератор.

Аналогичные недостатки имеет газогенератор, известный из решения [4]. Согласно [4] горючий реагент газогенератора выполнен в виде трубок, изготовленных из материалов, допущенных к длительному контакту с применяемым окислителем (или смесью окислителей), например углеводородов. Изготовление одинаковых трубок, а также операция загрузки с одновременной ориентацией их вдоль оси газогенератора и шпура являются весьма трудоемкими, при этом последняя не может быть механизирована. В итоге повышается трудоемкость буровзрывных работ. Решение [4] как наиболее близкое по технической сущности выбрано авторами в качестве прототипа.

Задачей заявляемого изобретения является создание газогенератора для буровзрывных работ, позволяющего повысить качество получаемой продукции и снизить трудоемкость как изготовления самого газогенератора, так и буровзрывных работ в целом.

Технический результат достигается тем, что в газогенераторе для буровзрывных работ, включающем корпус с размещенными в нем окислителем и горючим реагентом, выполненным в виде макроразмерного тела из, по меньшей мере, одного материала из группы, содержащей углеводороды, алюминий, магний и их сплавы, горючий реагент выполнен в виде устройства со сквозными каналами, ориентированными вдоль его оси, толщина стенки канала характеризуется следующей зависимостью: t = kнок/гg (1) где t - толщина стенки канала, мм; нок - насыпная (для сыпучего материала) или истинная (для жидкости) плотность используемого окислителя, кг/м3; г - плотность материала горючего реагента, кг/м3; g - стехиометрическое соотношение между массой окислителя и горючего элемента; k - экспериментальный коэффициент, k=0,550, а площадь поперечного сечения канала характеризуется следующей зависимостью:
a=nt2(2)
где а - площадь поперечного сечения канала, мм2;
n - экспериментальный коэффициент, n=50250;
t - толщина стенки канала, мм,
при этом соотношение окислителя к горючему реагенту составляет 350.

Поперечное сечение канала может иметь форму круга, квадрата, шестиугольника и любую другую форму, обеспечивающую плотнейшую упаковку каналов. Минимальный размер сечения и минимальная толщина стенки канала определяются технологическими возможностями оборудования.

Зависимости (1) и (2), позволяющие рассчитать габариты горючего элемента для заданного окислителя, были установлены авторами в ходе экспериментальных исследований.

Заявляемое устройство и его элементы могут быть изготовлены из термопластов методом литья под давлением, а также вакуум-формованием, экструзией и другими подходящими способами в зависимости от используемого материала и заданной структуры каналов.

Горючий реагент газогенератора может быть выполнен с возможностью изменения длины. Например, путем соединения, по меньшей мере, двух частей реагента одинаковой или разной длины. Такое соединение позволяет варьировать длину устройства. Указанные части соединяют попарно с помощью выполненных на них канавок и ответных им выступов. Для предотвращения поворота друг относительно друга части устройства дополнительно снабжены шипами и ответными им пазами. Обладая необходимой жесткостью, горючий реагент может служить корпусом газогенератора.

Из материалов, подходящих для изготовления горючего реагента заявляемого устройства, можно, в частности, указать следующие: полиэтилен высокой плотности, полиэтилен низкой плотности, полипропилен, полистирол, ударопрочный полистирол, акрилонитрилбутадиенстирол, алюминий, магний, их сплавы и различные сочетания указанных материалов.

Методом литья под давлением из указанных термопластов можно изготовить весь горючий реагент или его части, которые затем собирают в устройство необходимой длины. Для литья пригодны металлические формы. Заданные размеры устройства (диаметр, длина, толщина стенок) определяются размерами соответствующих формообразующих деталей литьевой формы. Технологический режим литья зависит от выбранной марки термопласта. Возможно изготовление корпуса газогенератора из термопласта методом литья под давлением.

Горючий реагент заявляемого устройства может быть выполнен с каналами, имеющими рифленые стенки. В этом случае возможно использование пленочных материалов (гладкой подложки) совместно с гофрированными материалами, а также ленты Корекс (обычно применяемой для упаковки) и металлов. В качестве подходящих материалов можно указать Al-фольгу, плакированную полиэтиленом, и картон, плакированный полиэтиленом. Гладкий материал подвергают гофрированию или используют готовый материал с рифлением, например гофрокартон. Последний совместно с гладкой подложкой (или другой материал подобного вида) скручивают в рулон. Толщина стенки канала и в этом случае определяется по формуле (1). При этом длина изделия обеспечивается подбором материала необходимой ширины.

Горючий реагент газогенератора (отдельные его части) может быть изготовлен из разных материалов, например, из металла и углеводорода (целлюлозы и т.п.). Подбирая комбинации материалов, можно увеличить энергетику и скорость горения состава.

Для повышения жесткости горючий реагент может быть снабжен внешней оболочкой, выполненной из того же материала, что и реагент или картона или металла и т.п.

В качестве окислителя в заявляемом газогенераторе можно использовать хлораты и перхлораты, хроматы и бихроматы, а также нитраты щелочных, щелочно-земельных металлов и аммония.

Изобретение поясняется графическими материалами, на которых изображены:
на фиг.1 - газогенератор. Изометрическая проекция, общий вид;
на фиг.2 - то же, разрез газогенератора, общий вид;
на фиг.3 - то же, сечение газогенератора по А-А;
фиг.4 - то же, разрез газогенератора, в котором каналы горючего реагента выполнены с рифлеными стенками, общий вид;
на фиг. 5 - то же, сечение газогенератора, представленного на фиг.4 по А-А;
на фиг.6 - горючий реагент газогенератора (или часть его) с внешней оболочкой. Изометрическая проекция, общий вид. Сечение канала квадрат;
на фиг.7 - то же в разрезе;
на фиг.8 - то же в разрезе;
на фиг.9 - вид В разреза, представленного на фиг.8;
на фиг.10 - вид С разреза, представленного на фиг.8;
на фиг.11 - горючий реагент с рифлеными стенками каналов, выполненный из гофрокартона с полиэтиленовой подложкой;
на фиг.12 - горючий реагент с рифлеными стенками каналов, выполненный из ленты Корекс.

Газогенератор содержит заглушку 1, горючий реагент 2 (на фиг.2 представлен горючий реагент, собранный путем соединения частей, а на фиг.4 - горючий реагент выполнен в виде одного элемента) с каналами 4, в которых размещен окислитель, воспламенитель 5, провода 6. Стенки каналов 4 с рифлением содержат подложку - слой гладкой пленки 7 и гофрированную пленку 8. Горючий реагент с гладкими стенками содержит оболочку 9, систему каналов 3, шип 10 и ответный ему паз 11, выступ 12 и ответную ему канавку 13, предназначенные для соединения частей горючего реагента. На одной стороне стенки каналов горючего реагента с рифлением, выполненного из ленты Корекс, имеются углубления 14, а на другой - выступы 15.

Рифления и выступы на стенках каналов повышают жесткость конструкции и обеспечивают постоянство ширины канала. Не вызывает сомнений, что для реализации изобретения могут использоваться другие материалы, выполняющие перечисленные функции.

Для проведения буровзрывных работ горючий элемент с оболочкой или без нее, заданной длины или собранный из нескольких частей с достижением необходимой длины, устанавливают в корпусе 1 газогенератора, засыпают (заливают) окислитель в каналы 4, герметизируют его от внешней среды заглушкой 2, устанавливают в шпуре, а реакцию разложения (горения) инициируют подачей электроимпульса с помощью проводов 6 на воспламенитель 7.

Расчет габаритов горючего реагента заявляемого газогенератора приведем на примере конструкции, изображенной на фиг.4-5. В случае использования в качестве окислителя хлората натрия NaClO3, а в качестве горючего - полиэтилена nCH2 толщина стенки канала t равна 0,3 мм, площадь поперечного сечения канала а= 14,4 мм2. Указанные значения получены из формул (1) и (2) следующим образом:
t=(1,541400):(9507,57)=0,3 мм,
где k=1,54,
нок = 1400 кг/м3,
г = 950 кг/м3,

a=1600,09=14,4 мм2,
где n=160.

Использование заявляемого устройства позволяет повысить производительность труда - снижается трудоемкость подготовки горючего реагента и газогенератора, упрощается загрузка горючего реагента в газогенератор, обеспечивается механизация загрузки окислителя, а также повышается безопасность транспортировки газогенераторов. Конструкция устройства позволяет увеличить энергетику и скорость горения состава за счет сочетания различных материалов.

Конструкция горючего реагента обеспечивает меньший разброс в воспламенении состава и его сгорании из-за более равномерного распределения окислителя по сечению - нет полостей, недоступных для загрузки, т.е. повышается воспроизводимость изделий. Это в свою очередь повышает качество получаемой продукции.

Заявляемое устройство прошло испытания в карьере ЗАО "Интеркамень" Другорецкий 3 на породе габбро-диабаз. Отмечен разброс камней на расстоянии 1,0-1,2 м. Мелкие осколки отсутствуют. Поверхность скола ровная. Производительность буровзрывных работ по сравнению с известным решением возросла в ~ 1,5 раза.

Источники информации
1. Ржевский Р. В. Открытые горные работы. -М.: Недра. 1985, с. 509.

2. Патент РФ 2026987 от 20.01.95, Е 21 С 37/00.

3. Патент РФ 2134782 от 13.11.98, Е 21 С 37/00.

4. Патент РФ 2153069 от 11.11.98, Е 21 С 37/00.


Формула изобретения

1. Газогенератор для буровзрывных работ, включающий корпус и размещенные в нем окислитель и горючий реагент, выполненный в виде макроразмерного тела из, по меньшей мере, одного материала из группы, содержащей углеводороды, алюминий, магний и их сплавы, отличающийся тем, что макроразмерное тело горючего реагента выполнено в виде устройства со сквозными, ориентированными вдоль его оси каналами, при этом толщина стенки канала характеризуется следующей зависимостью:
t = kнок/гg, (1)
где t - толщина стенки канала, мм;
нок - насыпная (для сыпучего материала) или истинная (для жидкости) плотность используемого окислителя, кг/м3;
г - плотность материала горючего реагента, кг/м3;
g - стехиометрическое соотношение между массой окислителя и горючего элемента;
k - экспериментальный коэффициент, k= 0,550;
a площадь поперечного сечения канала характеризуется следующей зависимостью:
a= nt2, (2)
где а - площадь поперечного сечения канала, мм2;
n - экспериментальный коэффициент, n= 50250;
t - толщина стенки канала, мм,
при этом соотношение окислителя к горючему реагенту составляет 350.

2. Газогенератор по п. 1, отличающийся тем, что, обладая необходимой жесткостью, горючий реагент служит корпусом газогенератора.

3. Газогенератор по п. 1 или 2, отличающийся тем, что горючий реагент выполнен из термопласта с возможностью изменения длины.

4. Газогенератор по п. 3, отличающийся тем, что горючий реагент выполнен из, по меньшей мере, двух частей, скрепленных при помощи канавок и ответных им выступов, при этом канавки и выступы выполнены на внешней поверхности указанных частей горючего реагента.

5. Газогенератор по п. 4, отличающийся тем, что части горючего реагента дополнительно снабжены шипами и ответными им пазами, размещенными на их внешней поверхности.

6. Газогенератор по любому из пп. 1-5, отличающийся тем, что горючий реагент выполнен из термопласта на основе полиэтилена высокой плотности, или полиэтилена низкой плотности, или полипропилена, или полистирола, или ударопрочного полистирола, или акрилонитрилбутадиенстирола.

7. Газогенератор по любому из пп. 1-6, отличающийся тем, что горючий реагент выполнен методом литья под давлением или экструзией или вакуум-формованием.

8. Газогенератор по п. 1 или 2, отличающийся тем, что каналы горючего реагента выполнены с рифлеными стенками.

9. Газогенератор по п. 8, отличающийся тем, что горючий реагент выполнен из гофрокартона с гладкой подложкой.

10. Газогенератор по любому из пп. 1-9, отличающийся тем, что горючий реагент дополнительно содержит наружную оболочку.

11. Газогенератор по п. 9, отличающийся тем, что наружная оболочка горючего реагента выполнена из того же материала, что и горючий реагент.

12. Газогенератор по любому из пп. 1-11, отличающийся тем, что в качестве окислителя он содержит хлораты, и/или перхлораты, и/или хроматы, и/или бихроматы, и/или нитраты щелочных, щелочно-земельных металлов и аммония.

РИСУНКИ

Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4, Рисунок 5, Рисунок 6, Рисунок 7, Рисунок 8, Рисунок 9, Рисунок 10, Рисунок 11, Рисунок 12



 

Похожие патенты:

Изобретение относится к горному делу и может быть использовано для образования трещины гидроразрывом горной породы через скважину с целью расслоения труднообрушаемой кровли, дегазации угольного пласта, управления напряженно-деформированным состоянием породного массива в окрестности горной выработки, добычи ценного кристаллического сырья и строительного камня

Изобретение относится к горному делу и может быть использовано для образования трещин в скважинах с целью отделения блоков от массивов, добычи ценного кристаллического сырья и строительного камня

Изобретение относится к горному делу, в частности к гидравлическому разрыву угольных пластов с целью создания зон повышенной дренирующей способности для извлечения угольного метана

Изобретение относится к горной, горно-строительной и строительной промышленности и может быть использовано для разрушения твердых пород при бурении взрывных и геологоразведочных скважин буровыми станками

Изобретение относится к области горного дела и строительства и может быть использовано при погружении в грунт стержневых элементов, при дроблении негабаритов и т

Изобретение относится к горной промышленности и строительству и может быть использовано для разрушения горных пород и других материалов

Изобретение относится к горной промышленности, в частности касается конструкции силового элемента

Изобретение относится к горному делу и может быть использовано для образования трещин в скважинах с целью отделения блоков от массивов, добычи ценного кристаллического сырья и строительного камня

Изобретение относится к горной промышленности, строительному и коммунальному машиностроению, в частности к гидравлическим ударным устройствам для разрушения пород, мерзлых грунтов, снежно-ледяных образований и т.п

Изобретение относится к горным работам, осуществляемым, например, при разрушении негабаритных камней и валунов, сооружений из кирпича, бетона, отбойке штучного камня и блоков, проходке туннелей, и может быть использовано в процессе добычи полезных ископаемых и драгоценных и полудрагоценных камней

Изобретение относится к горной промышленности, в частности, к пневматическим молоткам для разрушения, например, скальных горных пород и может быть использовано при создании пневматических машин ударного действия

Изобретение относится к строительным и дорожным машинам и предназначено для использования в статико-динамическом рыхлителе прочных и мерзлых грунтов, для уплотнения грунта в стесненных условиях, разрушения асфальтобетонных и бетонных покрытий дорог и других работ

Изобретение относится к области горного и дорожно-строительного машиностроения, а именно к электромагнитным ударным механизмам, и может быть использовано для разрушения горных пород, отделения шламовых образований в ковшах для разливки металлов, активации рабочих органов горных машин и т.п

Изобретение относится к горной промышленности и строительству, в частности к пневматическим машинам ударного действия

Изобретение относится к горному делу и может быть использовано для образования поперечных зародышевых трещин в массиве горных пород с целью его направленного разупрочнения путем развития плоскости флюидоразрыва и обеспечения оптимальных условий проведения процессов подземной разработки полезных ископаемых

Изобретение относится к горному делу, в частности к способам добычи блоков строительного камня, преимущественно на горных склонах, и может быть использовано при формировании скальных уступов карьеров и дорог

Изобретение относится к горному делу, строительству, может использоваться для разрушения пород при проходке горных выработок, разборке кирпичных и бетонных сооружений и других монолитных объектов на блоки правильной формы годные для дальнейшего использования

Изобретение относится к горному делу, строительству, может использоваться для разрушения пород при проходке горных выработок, разборке кирпичных и бетонных сооружений и других монолитных объектов на блоки правильной формы годные для дальнейшего использования

Изобретение относится к ударным механизмам, которые могут быть использованы в машинах для разработки скальных пород и мерзлых грунтов в горной и строительной промышленностях
Наверх