Способ работы осушителя газа и осушитель газа

 

Изобретение относится к области создания техники для осушки потока сжатого газа. Осушку сжатого газа производят посредством охлаждения и отбора сконденсировавшейся влаги во влагоотделителе при подаче двух потоков сжатого газа от разных источников. Предварительное охлаждение одного потока газа происходит в процессе его расширения в вихревой трубе, а выхолаживание другого потока происходит при смешении его с этим охлажденным потоком. Камеру энергоразделения вихревой трубы охлаждают потоком, выходящим из влагоотделителя, после чего этот поток подают потребителю. Использование изобретения позволит уменьшить размеры теплообменника или исключить его из устройства, переложив его функцию на вихревую трубу. 2 с. и 2 з.п. ф-лы, 3 ил.

Изобретение относится к области создания техники для осушки потока сжатого газа, например сжатого воздуха.

Известен способ работы осушителя газа, включающий подачу сжатого газа от основного источника, его предварительное охлаждение потоком, выходящим из холодного конца вихревой трубы, отбор сконденсировавшейся влаги во влагоотделителе и подачу осушенного потока в вихревую трубу [1].

Реализуется этот способ в устройстве [1], содержащем основной источник сжатого газа, холодильник, влагоотделитель и вихревую трубу.

В известном устройстве для теплообмена используется обычный рекуперативный теплообменник, имеющий большую площадь теплообмена и, следовательно, высокую стоимость.

Это является недостатком.

Задачей изобретения является уменьшение или даже исключение указанного недостатка.

Техническим результатом решения поставленной задачи является уменьшение площади теплообменника или даже исключение теплообменника из конструкции осушителя.

В части способа технический результат достигается тем, что предварительное охлаждение потока сжатого газа производят посредством смешения с потоком, выходящим из холодного конца вихревой трубы, после влагоотделителя поток сжатого газа направляют на охлаждение камеры энергоразделения вихревой трубы, затем часть потока отводят потребителю, а другую часть сжимают в дополнительном источнике до давления, более высокого, чем в основном источнике, затем подают в дополнительный влагоотделитель и в вихревую трубу.

Известно, из-за того что в камере энергоразделения вихревой трубы вращательное течение газа имеет явно выраженный турбулентный характер, то происходит высокоэффективный теплообмен между газовым потоком и внутренней металлической (теплопроводной) стенкой камеры [2, с. 74]. Эффективность такого теплообмена иногда на порядок превосходит эффективность теплообмена в обычном теплообменнике. Благодаря этому появляется возможность использовать стенку охлаждаемой камеры энергоразделения вихревой трубы в качестве теплообменника.

Поэтому в части устройства технический результат достигается тем, что камера энергоразделения вихревой трубы заключена в герметичный корпус, образующий охлаждающую полость, входной патрубок которой подключен к выходу влагоотделителя, а выходной патрубок - к потребителю и к дополнительному источнику сжатого газа, который соединен с выходным патрубком вихревой трубы через дополнительный влагоотделитель.

Это позволяет уменьшить площадь теплообмена или даже исключить из конструкции теплообменник, переложив его функции на вихревую трубу.

В этом и заключается техническая сущность изобретения, конечным результатом которого является упрощение осушителя газа.

Предлагаемый способ работы реализуется в конструкции, изображенной на фиг. 1, 2 и 3.

Устроена предлагаемая конструкция следующим образом (фиг. 1).

Основной источник сжатого газа 1 (нагнетатель, компрессор, магистральный трубопровод, скважина и др.) через холодильник 2 присоединен к тройнику-смесителю 3. К этому же смесителю 3 с помощью холодного конца 4 вихревой трубы 5, через входной патрубок 6 вихревой трубы, через дополнительный влагоотделитель 7 и холодильник 8 присоединен дополнительный источник сжатого газа 9 (компрессор), имеющий рабочее давление, более высокое, чем в основном источнике 1. Выход тройника-смесителя 3 через основной влагоотделитель 10 связан с входным патрубком 11 герметичного корпуса 12, который вместе с наружной поверхностью 13 камеры энергоразделения вихревой трубы образует охлаждающую полость 14. Выходной патрубок 15 охлаждающей полости 14 через тройник-разделитель 16 связан с потребителем 17 осушенного газа и с входом дополнительного источника сжатого газа (компрессора) 9. Горячий патрубок 18 вихревой трубы 5 перекрыт заглушкой 19.

Рассматриваемое устройство для реализации предлагаемого способа работает следующим образом (фиг. 1).

Сжатый воздух после основного компрессора 1 охлаждается в холодильнике 2 и поступает на смешение в смеситель 3. Сюда же через холодильник 8, через влагоотделитель 7, входной патрубок 6 и холодный патрубок 4 вихревой трубы 5 поступает сжатый воздух от дополнительного компрессора 9, имеющего рабочее давление, более высокое, чем в основном компрессоре 1. Например, компрессор 1 имеет стандартное рабочее давление 6 атм (типовое давление воздуха, подаваемого в обычные заводские пневмосети), а компрессор 9 может иметь давление 30 атм. Проходя через вихревую трубу 5, охлажденный в холодильнике 5 газ высокого давления дросселируется с 30 до 6 атм и сильно охлаждается. Смешиваясь в смесителе 3, основной теплый поток, поступающий от компрессора 1, выхолаживается от сильно охлажденного в вихревой трубе 5 дополнительного потока, поступающего в смеситель из патрубка 4. В образующейся холодной смеси происходит конденсация влаги, которая отделяется во влагоотделителе 10, после чего осушенный воздух, проходя через полость 14 вихревой трубы, через тройник-разделитель 16 поступает потребителю 17. При этом в тройнике-разделителе 16 часть потока отбирается и подается на вход дополнительного компрессора 9.

Вихревые трубы очень чувствительны к влаге, содержащейся в питающем газе. Поэтому на их входе (после компрессора 9 и холодильника 8) обязательно ставится дополнительный влагоотделитель 7, т.к. при повторном сжатии воздуха от 6 атм до 30 атм влажность ранее подсушенного сжатого воздуха, выходящего из компрессора 9, опять повышается до 100%.

Вихревая труба 5 может работать либо в двухпоточном, либо в однопоточном режиме.

При работе в однопоточном режиме горячий патрубок 18 перекрывается заглушкой 19.

Для уменьшения энергозатрат, связанных с потерей холода при сбросе потребителю холодного осушенного потока, выходящего из влагоотделителя 10, необходимо этот холод рекуперировать. С этой целью такой газ следует направить в качестве обратного потока своеобразного рекуперативного теплообменника, состоящего из вихревой трубы 5 и охлаждающей полости 14 камеры энергоразделения. В качестве прямого потока в таком теплообменнике служит поток газа 6-4, подаваемый из компрессора 9 через вихревую трубу 5 в тройник-смеситель 3.

Внутри конусной камеры 13 происходят сложные процессы энергообмена, связанные с температурным разделением входящего потока на горячий и холодный компоненты. Горячая часть потока сильно разогревает стенку камеры энергоразделения, что позволяет за счет ее охлаждения холодным потоком 11-15 понизить температуру холодного потока 4, поступающего в тройник 3.

Это позволяет без использования теплообменников непрерывно возвращать в охлаждаемый поток 6-4 холод, теряемый на выходе из влагоотделителя 10, что повышает экономичность работы осушителя.

Если интенсивность теплообмена в охлаждающей полости 13 недостаточна для нормального течения процесса влагоотделения, то возможно совместное включение в работу и охлаждаемой вихревой трубы 5 и реферативного теплообменника 20 (фиг. 2). Но потребная площадь теплообмена у такого теплообменника будет значительно меньшей, т. к. значительную часть функции рекуперации берет на себя охлаждаемая вихревая труба.

При работе вихревой трубы в двухпоточном режиме горячий поток, выходящий из патрубка 18, либо сбрасывается в атмосферу, либо подается на вход основного компрессора 1. Это уменьшает количество влаги в основном осушаемом потоке, т. к. эта часть потока была ранее уже осушена. Но горячий поток может быть подан потребителю 17 через тройники 21 и 16 (фиг. 3). Для этого вихревая труба выполняется двухпоточной, горячий патрубок которой подсоединен к выходу из осушителя.

В целом, изобретение позволяет осушать большие потоки влажного воздуха, метана, азота, аргона и др. газов без потери давления в охлаждаемой основной части потока, исходящего от основного компрессора. Это расширяет технологическую применимость изобретения. Кроме того, удается уменьшить теплообменную площадь теплообменника или даже исключить его из конструкции. Это упрощает устройство осушителя.

ЛИТЕРАТУРА 1. А. Л. Баранов, Л.М. Дыскин, А.Г. Севастьянов. Установка для осушки газа. Авторское свидетельство 659841 от 24.02.78 г.

2. Суслов А. Д., Иванов А.В., Мурашкин А.В., Чижиков Ю.В. Вихревые аппараты. М.: Машиностроение. 1985.

Формула изобретения

1. Способ работы осушителя газа, включающий подачу сжатого газа от основного источника, его предварительное охлаждение потоком, выходящим из холодного конца вихревой трубы, отбор сконденсировавшейся влаги во влагоотделителе и подачу осушенного потока в вихревую трубу, отличающийся тем, что предварительное охлаждение потока сжатого газа производят посредством смешения с потоком, выходящим из холодного конца вихревой трубы, после влагоотделителя поток сжатого газа направляют на охлаждение камеры энергоразделения вихревой трубы, затем часть потока отводят потребителю, а другую часть сжимают в дополнительном источнике до давления более высокого, чем в основном источнике, затем подают в дополнительный влагоотделитель и в вихревую трубу.

2. Способ работы осушителя газа по п. 1, отличающийся тем, что после охлаждения камеры энергоразделения вихревой трубы поток пропускают через рекуперативный теплообменник для охлаждения сжатого потока после основного источника.

3. Осушитель газа, содержащий основной источник сжатого газа, холодильник, влагоотделитель и вихревую трубу, отличающийся тем, что камера энергоразделения вихревой трубы заключена в герметичный корпус, образующий охлаждающую полость, входной патрубок которой подключен к выходу влагоотделителя, а выходной патрубок - к потребителю и к дополнительному источнику сжатого газа, который соединен с входным патрубком вихревой трубы через дополнительный влагоотделитель.

4. Осушитель газа по п. 3, отличающийся тем, что вихревая труба выполнена двухпоточной, горячий поток которой соединен с выходом осушителя.

РИСУНКИ

Рисунок 1, Рисунок 2, Рисунок 3



 

Похожие патенты:

Изобретение относится к комбинированным системам для нагрева и охлаждения и может использоваться в различных областях

Изобретение относится к теплотехнике и предназначено для реализации вихревых кондиционеров транспортных средств

Изобретение относится к комбинированным системам для нагрева и охлаждения

Изобретение относится к системам осушки потока сжатого газа

Изобретение относится к области гидропневмоавтоматики и может быть использовано для регулирования давления природного газа на выходе газораспределительной станции

Изобретение относится к холодильной технике

Изобретение относится к области создания охлаждающих и сжижающих устройств, работающих на использовании свойств расширяющегося газового потока

Изобретение относится к холодильной технике и предназначено для охлаждения электронной аппаратуры и термостабилизации изолированных технических объектов

Изобретение относится к области холодильной техники

Изобретение относится к области осушки газов или воздуха охлаждением и отделением капельной влаги, осуществляемой с помощью генерации холода в вихревых трубах, и предназначено для использования на линиях подачи осушенного сжатого воздуха в различных пневмосистемах во всевозможных отраслях народного хозяйства

Изобретение относится к системам осушки потока сжатого газа

Изобретение относится к кондиционированию воздуха в помещениях, салонах и кабинах транспортных средств

Изобретение относится к энергомашиностроению, а именно к теплоэнергетике, и может быть использовано для охлаждения оборотной воды теплообменной аппаратуры и получения механической энергии

Изобретение относится к области эксплуатации компрессорных станций магистральных газопроводов, в частности аппаратов воздушного охлаждения

Изобретение относится к кондиционированию воздуха, а именно к способу его обработки и устройствам для кондиционирования

Изобретение относится к системам вентиляции и может быть применено при создании и реконструкции инженерных систем в строительстве объектов различного назначения

Изобретение относится к области холодильной техники и технологии и предназначено для хранения неупакованных пищевых продуктов

Изобретение относится к ракетно-космической технике и может быть использовано для обеспечения необходимых температурно-влажностных режимов космических объектов в процессе их наземной подготовки на стартовой позиции, особенно в зимних условиях, когда атмосферный воздух, забираемый для термостатирования, имеет низкие температуру и влагосодержание и требует подогрева и увлажнения без капельной влаги, то есть качественного и надежного кондиционирования

Изобретение относится к технике кондиционирования воздуха и может быть использовано в камерах орошения кондиционеров

Изобретение относится к области вентиляции и кондиционирования

Изобретение относится к химической очистке дымовых газов от окислов азота
Наверх