Способ управления ракетой на маршевом участке полета

 

Изобретение относится к ракетной технике и может быть использовано при проектировании ракет. Угловые отклонения ракеты от линии визирования цели измеряют и формируют команды управления ракетой пропорционально ее линейным отклонениям, определяемым по угловым отклонениям ракеты от линии визирования цели и дальности до ракеты. Предварительно определяют силу света бортового источника излучения до прохождения в атмосфере и дальность до ракеты в момент отделения двигателя. Измеряют освещенность фотоприемного устройства пеленгатора ракеты в момент отделения двигателя и его текущую освещенность на маршевом участке полета ракеты. Для формирования команд управления ракетой используют текущую дальность до ракеты, которую определяют из некоторой зависимости. Способ позволяет повысить точность наведения ракеты на цель. 2 ил.

Изобретение относится к области ракетной техники и может быть использовано при проектировании ракет.

Известны способы управления ракетой, основанные на оптическом слежении за ракетой и измерении ее координат по инфракрасным источникам излучения на ракете [1].

Известен способ управления ракетой [2], принятый за прототип. Он основан на следующем: наземной аппаратурой управления с использованием сигнала фотоприемного устройства пеленгатора ракеты по инфракрасному излучению источника на ракете измеряются угловые отклонения ракеты от линии визирования цели. Далее в центральной вычислительной системе (счетно-решающем приборе) угловые отклонения ракеты умножаются на программную дальность до ракеты, предварительно расчетные значения, которой в функции полетного времени хранятся в ее памяти, и получают линейные отклонения ракеты от линии визирования цели, пропорционально которым затем формируют команды управления ракетой, подаваемые через радиолокационный тракт на борт ракеты.

Недостатком такого способа является то, что при управлении ракетой не измеряется дальность до ракеты, а используется программная дальность, которая при стрельбе по подвижной цели, особенно в конце маршевого участка наведения, может отличаться на значительную величину от реальной дальности, что приведет к снижению точности наведения и, возможно, нарушению управления ракетой.

Задачей данного предлагаемого изобретения является повышение точности наведения ракеты на цель.

Поставленная задача достигается тем, что в способе управления на маршевом участке полета ракетой с отделяемым двигателем и бортовым источником излучения с использованием сигнала фотоприемного устройства пеленгатора ракеты, включающем измерение угловых отклонений ракеты от линии визирования цели, формирование команд управления ракетой пропорционально линейным отклонениям ракеты, определяемым по угловым отклонениям ракеты от линии визирования цели и дальности до ракеты, определяют предварительно силу света бортового источника излучения до прохождения в атмосфере и дальность до ракеты в момент отделения двигателя, измеряют освещенность фотоприемного устройства пеленгатора ракеты в момент отделения двигателя и его текущую освещенность на маршевом участке полета ракеты, а для формирования команд управления ракетой используют текущую дальность до ракеты, которую определяют из зависимости: где Д - текущая дальность до ракеты; Е - текущая освещенность фотоприемного устройства пеленгатора; J0 - сила света бортового источника излучения до прохождения атмосферы; Ер - освещенность фотоприемного устройства в момент отделения двигателя ракеты; Др - дальность до ракеты в момент отделения двигателя.

В зависимости (1) символ "е" обозначает трансцендентное число е=2,71828. .., символ "ln ()" - натуральный логарифм с основанием е.

Предлагаемый способ за счет использования сигнала фотоприемного устройства пеленгатора ракеты, пеленгующего источник инфракрасного излучения на ракете, позволяет получить текущую дальность до ракеты на маршевом участке полета и тем самым повысить точность ее наведения на цель.

Предлагаемое изобретение поясняется фиг. 1 и 2. На фиг. 1 приведена траектория движения ракеты: на стартовом участке, т.е. на участке полета ракеты с отделяемым разгонным двигателем, и на маршевом участке - участке полета без разгонного двигателя. На фиг. 1 обозначено: 1 - ракета; 2 - отделившийся двигатель; 3 - угловой сектор пространства (луч) пеленгации первого (широкого) канала пеленгатора ракеты, который измеряет координаты ракеты по излучению факела разгонного двигателя; 4 - наземная аппаратура управления; 5 - линия визирования цели; 6 - угловой сектор пространства (луч) второго (узкого) канала пеленгатора ракеты, который измеряет координаты ракеты по бортовому источнику излучения на ракете; 7 - источник инфракрасного излучения на ракете; 8 - маршевая ступень ракеты. На фигуре 2 представлена зависимость изменения текущего сигнала освещенности Е фотоприемного устройства пеленгатора в функции времени t от источника излучения на ракете, где Ер - освещенность фотоприемного устройства пеленгатора ракеты в момент tp отделения двигателя ракеты на дальности Др.

Способ управления ракетой на маршевом участке полета осуществляется следующим образом: после запуска ракета (1) с разгонным двигателем встреливается в луч (3) первого канала пеленгатора наземной аппаратуры управления (4). С момента начала времени управления ракета (1) на стартовом участке управляется относительно линии визирования цели (5) по измеренным координатам факела двигателя. По окончании работы разгонный двигатель (2) отделяется от маршевой ступени ракеты, второй канал пеленгатора (6) захватывает на сопровождение источник излучения (7) маршевой ступени (8) ракеты и в пеленгаторе наземной аппаратуры управления (4) измеряется текущий сигнал освещенности фотоприемного устройства от источника излучения на ракете с последующим использованием его для выделения угловых отклонений ракеты от линии визирования цели и формирования команд управления ракетой на маршевом участке.

В момент отделения двигателя (разделения ракеты) измеряется по регистрации сигнала фотоприемного устройства пеленгатора его освещенность Ер. Соответствующая программная дальность отделения двигателя р определяется предварительно расчетным или экспериментальным путем. Сила света J0 источника излучения маршевой ступени ракеты до прохождения атмосферы определяется заранее в лабораторных условиях (без учета затухания при прохождении атмосферы). Текущая освещенность Е - определяется текущим сигналом с фотоприемного устройства. По известным величинам Е, J0, Ер, Др в соответствии с соотношением (1) определяется текущая дальность до ракеты Д.

Далее полученная дальность Д используется при определении линейных отклонений ракеты от линии визирования цели и вычислении команд управления, подаваемых на борт ракеты. Использование при формировании команд управления измеренной реальной дальности до ракеты позволяет увеличить точность вычисления команд управления, передаваемых на борт ракеты, улучшить процесс управления, а значит и точность наведения ракеты на цель.

Источники информации 1. Ф.К.Неупокоев. Стрельба зенитными ракетами. - М.: Военное издательство, 1991 г. (стр. 62-64).

2. Зенитные ракетные комплексы ПВО сухопутных войск. Техника и вооружение, 5- 6, 1999 г. (стр. 69).

Формула изобретения

Способ управления на маршевом участке полета ракетой с отделяемым двигателем и бортовым источником излучения с использованием сигнала фотоприемного устройства пеленгатора ракеты, включающий измерение угловых отклонений ракеты от линии визирования цели, формирование команд управления ракетой пропорционально линейным отклонениям ракеты, определяемым по угловым отклонениям ракеты от линии визирования цели и дальности до ракеты, отличающийся тем, что определяют предварительно силу света бортового источника излучения до прохождения в атмосфере и дальность до ракеты в момент отделения двигателя, измеряют освещенность фотоприемного устройства пеленгатора ракеты в момент отделения двигателя и его текущую освещенность на маршевом участке полета ракеты, а для формирования команд управления ракетой используют текущую дальность до ракеты, которую определяют из зависимости
где Д - текущая дальность до ракеты;
Е - текущая освещенность фотоприемного устройства пеленгатора;
J0 - сила света бортового источника излучения до прохождения в атмосфере;
Ер - освещенность фотоприемного устройства в момент отделения двигателя ракеты;
Др - дальность до ракеты в момент отделения двигателя.

РИСУНКИ

Рисунок 1, Рисунок 2



 

Похожие патенты:

Изобретение относится к управляемым боеприпасам, которые выстреливаются из ствола пушки и предназначены для поражения наземных бронированных целей

Изобретение относится к военной технике, в частности к управляемым боеприпасам с головками самонаведения (ГСН)

Изобретение относится к средствам защиты от лазерного оружия аэрокосмических систем и хранилищ углеводородного горючего

Изобретение относится к области вооружения, в частности к артиллерийским управляемым снарядам с лазерной головкой самонаведения

Изобретение относится к военной технике, в частности к способам стрельбы снарядом со световым электрическим излучателем и стреляющим комплексам, реализующим эти способы

Изобретение относится к области вооружения, в частности к управляемым артиллерийским снарядам с самонаведением

Изобретение относится к ракетной технике, в частности к конструкции "сухих" отсеков ракеты-носителя, в которых могут быть размещены приборы различных ее систем

Изобретение относится к области военной техники, в частности к артиллерийским управляемым снарядам с головкой самонаведения на конечном участке полета

Изобретение относится к стационарным пусковым устройствам для космических ракет с различными координатами точек их установки в средней и нижней частях корпуса в горизонтальной плоскости при постоянном расстоянии между ними по высоте

Изобретение относится к военной технике и может найти применение при изготовлении ракет, в том числе, подводного старта

Изобретение относится к ракетной технике и может быть использовано в переносных зенитных ракетах, запускаемых с плеча, а также с зенитных установок, обеспечивающих, кроме того, залповую стрельбу по воздушным целям

Изобретение относится к военной технике, преимущественно к тактическим системам управляемого ракетного оружия (УРО) класса "поверхность - поверхность", обеспечивающим поражение целей самонаводящимися баллистическими реактивными снарядами (РС)

Изобретение относится к летательным аппаратам военного назначения

Изобретение относится к ракетной технике и может быть использовано при проектировании ракет в широком диапазоне выполняемых задач: для ракет (снарядов) ПТУР и систем залпового огня, ракет ПВО, ракет тактического, оперативно-тактического и стратегического назначения, в том числе для проектирования ракетно-космической техники и, в частности, к транспортным системам, предназначенным для старта с поверхности планеты, разгона, выведения на орбиту полезной нагрузки и других задач в космосе

Изобретение относится к вооружению, в частности к артиллерийским управляемым снарядам с лазерной головкой самонаведения

Изобретение относится к оборонной технике и, в частности, к средствам борьбы с малоразмерными целями и может быть использовано в системах управления снарядами, формирующих на борту команды управления движением
Наверх