Способ определения аэродинамических поправок к показаниям приемников воздушных давлений

 

Изобретение относится к экспериментальной аэродинамике и касается определения аэродинамических поправок к показаниям приемников воздушных давлений (ПВД). Способ состоит в определении поправок, связывающих показания бортовых ПВД с параметрами невозмущенного потока, а также зависимостей для определения угла атаки и влияния угла скольжения по результатам испытаний в аэродинамических трубах (АДТ). Способ реализуют путем поэтапного проведения в АДТ многократных испытаний моделей летательных аппаратов (ЛА) с моделями ПВД и датчиками местных углов отклонения потока, испытаний натурного ПВД и его моделей. По результатам этих испытаний и испытаний дренированной модели ЛА выбирают местоположение ПВД на ЛА, с использованием поправок к показаниям модели ПВД в изолированном виде определяют местные параметры потока у борта модели ЛА в месте расположения ПВД, а также различия в поправках натурного ПВД и его моделей. В окончательном виде поправки к натурным ПВД, установленным на ЛА, определяют суммированием поправок моделей ПВД в составе модели ЛА с разностью между поправками натурного ПВД и его моделью в изолированном виде с учетом местных параметров потока у борта ЛА. По зависимостям угловых коэффициентов изолированного натурного ПВД для местных углов атаки с учетом местных параметров потока определяют угловые коэффициенты натурного ПВД в составе ЛА. Технический результат реализации изобретения заключается в определении поправок к показаниям бортовых ПВД по результатам испытаний в аэродинамических трубах в случае исключения возможности их определения в летных условиях. 8 ил.

Изобретение относится к области экспериментальной аэродинамики и может быть использовано для определения параметров полета летательных аппаратов (ЛА): скорости V (чисел М), высоты H, углов атаки и скольжения .

Для определения указанных параметров используются приемники воздушных давлений (ПВД), которые устанавливаются на ЛА. ПВД измеряют полное Р, статическое Рм давления, давления на нижней Р, и верхней Р поверхностях головной части ПВД. ПВД устанавливают в носке ЛА или у его борта. При этом на давления, измеряемые ПВД, оказывают влияние обтекание самого ЛА, место расположения ПВД, его конструкция, число М полета, углы атаки и скольжения. По этой причине величины давлений, измеряемые ПВД, отличаются от полного P0 и статического P давлений невозмущенного потока, определив которые можно вычислить скорость и высоту полета ЛА. Соотношения между давлениями на нижней P и верхней Р поверхности головной части ПВД дают возможность определить углы атаки ЛА.

Для связи измеренных ПВД давлений с параметрами невозмущенного потока используются аэродинамические поправки в виде коэффициентов полного и статического давлений.

Для определения угла атаки используется связь между давлениями на головной части ПВД в виде углового коэффициента Определение поправок к бортовым ПВД является общим случаем. Бортовые ПВД находятся в поле местного полного и местного статического давлений, местных чисел Маха - Мместн и местных углов отклонения потока - местн на всех режимах полета.

При расположении ПВД в носке ЛА при скоростях полета, соответствующих числам М > 1 определяют истинные значения угла атаки и угла скольжения , и только при полете со скоростями, соответствующими числам М < 1, ПВД находятся в поле местного статического давления и местных чисел Маха (Мместн).

Обычно поправки к показаниям ПВД, установленным на ЛА, определяют в летных условиях.

Известен способ определения поправок к показаниям ПВД в летных условиях (Васильченко К.К., Леонов В.А., Пашковский И.М., Поплавский Б.К. Летные испытания самолетов. - М.: Машиностроение, 1996, с. 324-343).

Этот способ определения поправок к ПВД содержит три операции.

1. Определяют барометрическую высоту по зависимости изменения коэффициента статического давления от скорости V и угла атаки .

2. Определяют поправки в виде коэффициентов полного и статического давлений.

3. Определяют истинный угол атаки.

Известный способ имеет следующие недостатки: 1) для летательных аппаратов (ЛА), осуществляющих посадку на аэродром при возвращении из космоса, невозможно в летных условиях заранее до первого полета определить поправки и ввести их в систему управления;
2) высокая стоимость летных испытаний.

Задачей предлагаемого изобретения является определение поправок к показаниям бортовых ПВД для введения их в бортовую систему управления ЛА до полета.

Технический результат заключается в определении поправок к показаниям бортовых ПВД по результатам испытаний в аэродинамических трубах (АДТ), когда исключена возможность их определения в летных условиях, а также в существенном уменьшении затрат на создание и доводку систем высотно-скоростных параметров летательных аппаратов за счет сокращения или даже исключения этапа летных испытаний.

Технический результат достигается тем, что в известном способе определения аэродинамических поправок к показаниям приемников воздушных давлений (ПВД), установленных у борта летательного аппарата (ЛА), заключающемся в том, что поправки в виде коэффициентов полного

и статического давлений,
где P0, P - полное и статическое давления невозмущенного потока;
Р, Pм - полное и статическое давления, измеряемые ПВД;
М - число Маха;
- угол атаки;
определяют по результатам испытаний в аэродинамических трубах (АДТ).

При этом:
- проводят многократные испытания модели ЛА с установленными на ней моделями ПВД и датчиком местных углов отклонения потока и определяют средние арифметические значения поправок к показаниям моделей ПВД в виде коэффициентов полного

и статического

давлений, а также местный угол отклонения потока мест(M,,),
где Р0м,мод, Рм,мод - полное и статическое давления, измеряемые моделью ПВД, установленной на модели ЛА,
- угол скольжения;
- проводят испытания натурного ПВД в изолированном виде и определяют поправки к его показаниям в виде коэффициентов полного

и статического

давлений и угловой коэффициент

где P0м,н,из, Pм,н,из - полное и статическое давления, измеряемые натурным ПВД в изолированном виде,
P1м,н,из, P2м,н,из - давления на нижней и верхней поверхностях головной части натурного ПВД в изолированном виде;
- проводят испытания моделей ПВД в изолированном виде и определяют поправки к их показаниям в виде коэффициентов полного

и статического

где P0м,мод,из, Pм,мод,из полное и статическое давления, измеряемые моделью ПВД в изолированном виде;
- определяют местные коэффициенты полного

и статического

давлений и по ним местное число Мместн, для чего используют результаты определения поправок к показаниям модели изолированного ПВД и модели ЛА с моделями ПВД и показания датчика местных углов отклонения потока местн по формуле

где С - коэффициенты полного или статического давлений;
индексы:
местн - относится к местным условиям у борта ЛА,
м, мод - к моделям ПВД, установленным у борта модели ЛА,
м, мод, из - к моделям изолированного ПВД;
- определяют поправки к показаниям натурных ПВД, установленных у борта ЛА, в виде коэффициентов полного и статического давлений, для чего используют поправки к показаниям моделей ПВД, установленных на модели ЛА, и разность между поправками к показаниям изолированного натурного ПВД и его модели в местных условиях у борта модели ЛА по числу Мместн и углу отклонения потока местн по формуле

где

индексы мн - относятся к натурным ПВД, установленным у борта ЛА;
- определяют угловой коэффициент натурных ПВД, установленных у борта ЛА

по зависимостям изолированных ПВД м,н,из(M,) для всех местн с учетом местных чисел Мместн и угла скольжения .
На фиг. 1-8 приведены схемы и результаты исследований по определению поправок к показаниям ПВД предлагаемым способом:
на фиг.1 - схема дренированной модели ЛА,
на фиг. 2 - зависимость коэффициента при М=1,78 для сечения Х= 0,0845,
на фиг.3 - приемник воздушных давлений ПВД-28,
на фиг.4 - модель приемника ПВД-28,
на фиг. 5 - зависимость местного угла отклонения потока, под которым находится ПВД, от угла атаки модели,
на фиг.6 - последовательность получения и введения поправок в результаты трубного эксперимента,
на фиг.7 - зависимости коэффициента
на фиг.8 - результаты сравнения летных испытаний с трубными.

Предложенный способ определения поправок к показаниям бортовых ПВД осуществляют следующим образом:
1. Проводят испытания дренированной модели (фиг.1) и определяют распределение давления по ее поверхности в ряде сечений, перпендикулярных оси модели ЛА (фиг.2).

2. Выбирают оптимальное место расположения ПВД по зависимостям коэффициента статического давления от угловой координаты дренажной точки и угла атаки , в сечении, где величина коэффициента при изменении угла атаки и числа М практически не зависит от угла атаки (фиг.2).

3. Проводят многократные испытания модели ЛА с моделями ПВД и датчиком местных углов отклонения потока в большой сверхзвуковой АДТ при изменении числа М, угла атаки , угла скольжения и определяют среднеарифметические значения поправок

Известно, что погрешность определения среднего арифметического значения меньше в раз, чем погрешность самого эксперимента S в АДТ, где n - количество испытаний. Количество испытаний выбирают в зависимости от допустимого уровня погрешности на данном режиме полета ЛА и погрешности определения поля статического давления S в АДТ.

Зависимость местного угла отклонения потока местн, под которым находится ПВД, от угла атаки приведена на фиг.5.

Зависимость

приведена на фиг.6г.

4. Проводят испытания натурного ПВД (фиг.3) в изолированном виде по углу атаки и числу М и определяют по измерениям угловой коэффициент

На фиг.6а для иллюстрации приведена только поправка

так как поправки и определяются по одним и тем же формулам. Поправка приведена для местных чисел Маха Мместн=0,722... 0,752 у борта ЛА при числе М=0,8.

5. Проводят испытания модели ПВД (фиг.4) в изолированном виде по углу атаки и числу М и определяют по измерениям поправки в виде коэффициентов и Поправка (фиг.6а) приведена для тех же местных чисел Мместн при значении числа М=0,8.

Проведение испытаний натурного ПВД и его моделей вызвано тем, что модели ПВД из-за малых размеров невозможно выполнить конструктивно и по точности подобными натурному ПВД. Масштаб модели в рассматриваемом случае 1:10 (фиг. 4). Испытания натурного ПВД и его моделей проводят в малых АДТ, где поле статических давлений по сравнению с большими АДТ значительно равномернее.

6. По результатам определения поправок модели ПВД в составе модели ЛА и поправок модели изолированного ПВД и результатам определения местных углов атаки местн по формуле

методом итераций вычисляют местные коэффициенты полного и статического давлений и по ним местное число Мместн.

Метод итераций применяют в связи с тем, что неизвестно местное значение числа Мместн во втором члене правой части формулы. Для его определения необходимо знать местный коэффициент статического давления, вычисляемый по приведенной формуле. Известен коэффициент статического давления на поверхности модели ЛА без модели ПВД (фиг.2). Коэффициент полного давления моделью ПВД, установленной у борта ЛА, как показывает опыт, в диапазоне м = 10 измеряют без искажений. В первой итерации для определения Мместн используют коэффициент статического давления на поверхности модели ЛА в месте установки ПВД при =0 (фиг.2). По его значению при значении угла атаки = 0 определяют Мместн. Во второй итерации полученные значения и Мместн принимают постоянными для всех . В последующих итерациях уточняются Cместн(M,) и Cм,мод,из(Mместн, местн). Вычисления заканчиваются, когда приращение местного коэффициента статического давления в последующей итерации k+1 по сравнению с предыдущей k не превышает погрешность определения среднего арифметического коэффициента давления в АДТ в разных сериях испытаний.


Практически требуется выполнение не более 4-х итераций.

7. Определяют приращение поправок к показаниям изолированного натурного ПВД по сравнению с моделью ПВД при местных числах Мместн по углу атаки

8. Определяют приращение поправок к показаниям изолированного натурного ПВД по сравнению с моделью ПВД с учетом местных чисел Мместн и углов отклонения потока местн.

9. Определяют поправки к показаниям натурного ПВД, расположенного у борта ЛА, по формуле

Последующие операции обеспечивают выполнение всего способа.

10. Определяют изменение коэффициентов давления в зависимости от угла скольжения по формуле
Cм,н(M,,) = Cм,н,=0(M,)+Cм,мод(M,,).
Изменение углов атаки ЛА в рассматриваемом случае может происходить в диапазоне углов = -10...+30, а углов скольжения в диапазоне = 6. Как показывает опыт, приращения Cм,мод(M,,) при изменении угла в указанном диапазоне не зависят от формы отверстия полного давления и расположения отверстий статического давления в сечении на корпусе ПВД и его конструкции, а зависят от изменения коэффициентов давления у борта модели ЛА. Поэтому часть коэффициента давления в виде приращения Cм,мод(M,,) может быть перенесена на натурный ПВД. Поправки на влияние угла скольжения на показания бортового ПВД приведены на фиг.7.

11. Определяют угловой коэффициент натурных ПВД, установленных у борта ЛА

используя зависимость изолированного ПВД м,н,из(,M) и зависимости местн(M,,) и числа Mместн(M,,).
12. Исключают влияние углов скольжения на коэффициент давления и угловой коэффициент осреднением коэффициентов См,н и м,н ПВД правого и левого бортов ЛА


Как показывает опыт, при изменении углов скольжения = 6 с одной стороны борта происходит увеличение коэффициента давления (углового коэффициента), а с другой - пропорциональное уменьшение. Указанную особенность можно использовать для определения угла скольжения. Для исключения влияния углов скольжения при определении поправок к коэффициентам полного и статического давлениям и угловому коэффициенту их осредняют.

Сравнения величины поправок, определенных по предложенному способу, с поправками, полученными на основании результатов измерения бортовыми ПВД-28 при полете воздушно-космического самолета, совпадают (фиг.8). Доверительный интервал трубных испытаний с вероятностью Р=0,95 перекрывает результаты летных испытаний. Предложенный способ до полета ВКС был успешно опробован на высотно-скоростной летающей лаборатории. Таким образом, предложен способ, позволяющий по результатам испытаний в аэродинамических трубах с заданной точностью определить поправки к полному и статическому давлениям и углам атаки, измеряемым при помощи ПВД, установленных на ЛА, а также сократить число и, соответственно, стоимость летных испытаний.


Формула изобретения

Способ определения аэродинамических поправок к показаниям приемников воздушных давлений, установленных у борта летательного аппарата, заключающийся в том, что поправки определяют в виде коэффициентов полного

и статического

давлений,
где P0, P - полное и статическое давления невозмущенного потока;
Р, Рм - полное и статическое давления, измеряемые приемником воздушного давления;
М - число М;
- угол атаки,
отличающийся тем, что поправки определяют по результатам испытаний в аэродинамических трубах, при этом проводят многократные испытания модели летательного аппарата с установленными на ней моделями приемников воздушного давления и датчиком местных углов отклонения потока и определяют средние арифметические значения поправок к показаниям моделей приемников воздушного давления в виде коэффициентов полного

и статического

давлений, а также местный угол отклонения потока
мест(M,,),
где Р0м,мод, Рм,мод - полное и статическое давления, измеряемые моделью приемника воздушного давления, установленного на модели летательного аппарата;
- угол скольжения;
проводят испытания натурного приемника воздушного давления в изолированном виде и определяют поправки к его показаниям в виде коэффициентов полного

и статического

давлений и угловой коэффициент

где P0м,н,из, Pм,н,из - полное и статическое давления, измеряемые натурным приемником воздушного давления в изолированном виде;
Р1м,н,из, Р2м,н,из - давления на нижней и верхней поверхностях головной части натурного приемника воздушного давления в изолированном виде,
проводят испытания моделей приемника воздушного давления в изолированном виде и определяют поправки к их показаниям в виде коэффициентов полного

и статического

давлений,
где Р0м,мод,из, Рм,мод,из - полное и статическое давления, измеряемые моделью приемника воздушного давления в изолированном виде;
определяют местные коэффициенты полного

и статического

давлений и по ним местное число Мместн, для чего используют результаты определения поправок к показаниям модели изолированного приемника воздушного давления и модели летательного аппарата с моделями приемника воздушного давления и показания датчика местных углов отклонения потока местн по формуле

где С - коэффициенты полного

или статического

давлений;
индексы:
местн - относится к местным условиям у борта летательного аппарата;
м, мод - к моделям приемника воздушного давления, установленным у борта модели летательного аппарата;
м, мод, из - к моделям изолированного приемника воздушного давления;
определяют поправки к показаниям натурных приемников воздушного давления, установленных у борта летательного аппарата, в виде коэффициентов полного

и статического

давлений, для чего используют поправки к показаниям моделей приемников воздушного давления, установленных на модели летательного аппарата и разность между поправками к показаниям изолированного натурного приемника воздушного давления и его модели в местных условиях у борта модели летательного аппарата по числу Мместн и местн по формуле

где

индексы м н - относятся к натурным приемникам воздушного давления, установленным у борта летательного аппарата;
определяют угловой коэффициент натурных приемников воздушного давления, установленных у борта летательного аппарата

по зависимостям изолированных приемников воздушного давления м,н,из(M,) для всех местн с учетом местных чисел Mместн и угла скольжения .

РИСУНКИ

Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4, Рисунок 5, Рисунок 6, Рисунок 7, Рисунок 8



 

Похожие патенты:

Изобретение относится к средствам обучения

Изобретение относится к автоматизации измерений на аэродинамических установках

Изобретение относится к технологии проведения аэродинамических испытаний и касается разработки способа определения коэффициента аэродинамического сопротивления движущегося тела

Изобретение относится к экспериментальной технике для аэродинамических исследований летательных аппаратов при больших числах Рейнольдса и гиперзвуковых числах Маха

Изобретение относится к авиации

Изобретение относится к области экспериментальных исследований силы сопротивления среды движению тела

Изобретение относится к области баллистических испытаний и может быть применено для определения коэффициента лобового сопротивления тел, имеющих различную аэродинамическую форму, которые могут быть использованы в ракетостроении, артиллерии и других областях техники, занимающихся изучением движения тел в газообразных и жидких средах

Изобретение относится к аэрокосмической технике, а именно к способам определения параметров набегающего на летательный аппарат (ЛА) потока газа

Изобретение относится к области машиностроения и может быть использовано при испытаниях транспортных средств

Изобретение относится к области аэрокосмической техники, а именно, к способам определения аэродинамических характеристик - зависимостей коэффициентов аэродинамических моментов от определяющих переменных: углов атаки, скольжения и углов отклонения рулей, формы указанных зависимостей и их числовых параметров

Изобретение относится к экспериментальной аэродинамике и касается создания устройства для исследований штопора самолета с помощью его модели

Изобретение относится к экспериментальной аэродинамике и касается технологии исследований штопора самолета с помощью его модели

Изобретение относится к средствам определения гидравлического сопротивления трактов установок в различных областях промышленности

Изобретение относится к испытательной технике

Изобретение относится к области авиации, а именно к исследованиям вихреобразования под воздухозаборниками летательных аппаратов

Изобретение относится к аэродинамическим испытаниям и может быть использовано в ракетостроении и авиации для определения и регулирования полетных аэродинамических нагрузок на отсеки летательных аппаратов и их элементы

Изобретение относится к экспериментальной аэродинамике и может быть использовано в ракетостроении и авиации для определения и регулирования полетных аэродинамических нагрузок на отсеки летательных аппаратов (ЛА) и их элементы

Изобретение относится к области экспериментальной аэродинамики и может быть использовано для получения гиперзвуковых потоков газа для аэродинамических исследований
Наверх