Дозатор потока смеси пары вещество-воздух для создания паровоздушной смеси с заданной концентрацией


G01N1/22 - Исследование или анализ материалов путем определения их химических или физических свойств (разделение материалов вообще B01D,B01J,B03,B07; аппараты, полностью охватываемые каким-либо подклассом, см. в соответствующем подклассе, например B01L; измерение или испытание с помощью ферментов или микроорганизмов C12M,C12Q; исследование грунта основания на стройплощадке E02D 1/00;мониторинговые или диагностические устройства для оборудования для обработки выхлопных газов F01N 11/00; определение изменений влажности при компенсационных измерениях других переменных величин или для коррекции показаний приборов при изменении влажности, см. G01D или соответствующий подкласс, относящийся к измеряемой величине; испытание

 

Изобретение относится к области анализа материалов, к получению или подготовке образцов для исследования. Дозатор потока смеси пары вещество-воздух для создания паровоздушной смеси с заданной концентрацией содержит камеру испарителя для испарения веществ с высокой летучестью или камеру с увеличенным внутренним диаметром для испарения веществ с низкой летучестью. Камера испарителя предназначена для диффузии молекул с поверхности раздела жидкое вещество-пар в воздушный поток. На камеру навинчена крышка с каналом в ней для ввода паров вещества в поток. В крышке выполнены два штуцера для подсоединения к воздушному потоку. Устройство позволяет создавать паровоздушные смеси широкого спектра летучести и контролировать изменение свойств вещества в процессе дозирования и количество дозируемого вещества в единицу времени. 1 з.п.ф-лы., 6 ил., 3 табл.

Изобретение относится к области анализа материалов путем определения их химических и физических свойств, конкретно к получению или подготовке образцов для исследования путем их разбавления, распыления или смешения.

Известен дозатор потока смеси пары вещества-воздух для создания паровоздушной смеси с заданной концентрацией, содержащий камеру испарителя для диффузии молекул с поверхности раздела жидкое вещество-пар в воздушный поток и штуцер для подсоединения к воздушному потоку. Дозатор выполнен из стекла как единое целое (Е.А. Перегуд, Д.О. Горелик "Инструментальные методы контроля загрязнения атмосферы". Л.: Химия, 1981, с.297, фиг.1). Пары жидкости диффундируют через тонкий капилляр в корпус дозатора и смешиваются с потоком чистого воздуха. Данная конструкция диффузионного дозатора является ближайшей из аналогов.

При несомненных достоинствах известное дозирующее устройство отличается рядом недостатков: хрупкость стеклянной конструкции; сложность контроля количества дозируемого вещества в единицу времени; невозможность контроля изменения свойстве вещества, например вязкости и поверхностного натяжения, в процессе дозирования; малая концентрация создаваемой паро-газовой смеси и зависимость ее не только от давления насыщенного пара вещества, но и от диаметра используемого капилляра; для каждого из веществ широкого спектра летучести и для каждой создаваемой концентрации необходима индивидуальная конструкция дозатора, удовлетворяющая заданным требованиям, причем определение коэффициентов диффузии для расчета элементов конструкции дозатора связано со значительными трудностями.

Техническим результатом настоящего изобретения является разработка конструкции диффузионного дозатора, которая позволяет создавать паровоздушные смеси для веществ широкого спектра летучести и контролировать как изменение свойств вещества в процессе дозирования, так и количество дозируемого вещества в единицу времени.

Предложенный дозатор состоит из камеры испарителя (1) для испарения веществ с высокой летучестью или камеры с увеличенным внутренним диаметром для испарения веществ с низкой летучестью, навинчивающейся на камеру крышки (4) с каналом для ввода паров вещества и двух штуцеров (6) для подсоединения к воздушному потоку (фиг.2). Прокладка из фторопласта (2) обеспечивает герметичность резьбового соединения частей дозатора. Для герметизации дозатора в целом предусмотрены заглушки (3) штуцеров.

Все детали дозатора выполнены из легкого, механически прочного материала, дюралюминия. Малая масса самого дозатора предполагает возможность гравиметрического контроля дозируемого вещества в единицу времени по убыли массы дозатора с веществом.

Крышка дозатора с каналом для ввода паров вещества в поток имеет два штуцера для подсоединения к воздушному потоку (фиг.3). Пары вещества диффундируют с поверхности жидкости в камере испарителя в воздушное пространство камеры и через канал крышки вводятся в воздушный поток, чем достигается дозирование потока смеси пары-воздух. Количество пара вещества в смеси пар-воздух зависит от летучести вещества и от температурного режима испарения.

Для создания паровоздушной смеси малолетучего вещества используют для увеличения площади поверхности жидкого вещества камеру испарителя с увеличенным внутренним диаметром. Так камеры испарителя дозатора, используемые для дозирования веществ широкого спектра летучести, имеют разный внутренний диаметр, например, 10 мм для веществ, отличающихся высокой летучестью (зарин, зоман, люизит, иприт), 14 мм для веществ с низкой летучестью (Vx) (фиг.4).

Для герметизации штуцеров заглушками, например, при взвешивании дозатора, используется резьбовое соединение (фиг.5).

Перед началом работы в камеру испарителя дозатора заливается вещество, дозатор герметизируется с помощью прокладки из фторопласта, на штуцеры навинчиваются заглушки. Далее производится начальное взвешивание дозатора с веществом на аналитических весах с точностью до десятых долей миллиграмма.

Затем дозатор устанавливается в воздушном термостате. После удаления заглушек со штуцеров входной штуцер подсоединяется к побудителю расхода воздуха, а выходной штуцер - к камере или трубопроводу для создания паровоздушной смеси.

Для контроля количества дозируемого вещества в единицу времени гравиметрическим методом через фиксируемый промежуток времени производится повторное взвешивание вещества. Дозатор отсоединяется от воздушного потока, штуцеры герметизируются заглушками.

После оценки убыли вещества возможен как визуальный, так и аналитический контроль изменения состояния вещества в дозаторе, что особенно важно для легкогидролизующихся веществ или веществ, имеющих сложный состав.

На фиг.6 б) приведены результаты определения концентрации люизита в аэродинамическом потоке при использовании предлагаемого дозатора (дозируемый с объемной скоростью 3 л/мин поток вещества разбавлялся в 30000 раз). Полученные результаты свидетельствуют об изменении условий дозирования, что подтверждается данными гравиметрического контроля дозирования по убыли массы вещества в единицу времени за фиксируемые промежутки времени (фиг.6 а). Это позволяет использовать периодический гравиметрический контроль дозирования в процессе исследований для оценки стабильности работы дозатора.

В табл.1 приведены результаты контроля стабильности работы дозатора.

При этом большие создаваемые исходные концентрации паро-газовой смеси после дозатора (n10-2...n10-1 мг/л) позволяют, используя систему разбавления потока, создавать паровоздушные смеси с заданной концентрацией в широком диапазоне концентраций (от уровня предельно допустимых до n10-1 мг/л).

В та6л.2 приведены экспериментальные данные по оптимизации условий дозирования веществ широкого спектра летучести предлагаемым дозатором с использованием камеры испарения с внутренним диаметром 10 мм.

Приведенные экспериментальные данные свидетельствуют о том, что при использовании камеры испарения с внутренним диаметром 10 мм оптимальными условиями дозирования легколетучих веществ (убыль массы составляет не менее 15...20 мг, при этом погрешность взвешивания не превышает 0,5%) являются: для зомана, иприта - 40oС; зарина, люизита - 25...30oС.

Однако даже при температуре 50oС в случае Vx, летучесть которого примерно в тысячу раз меньше, убыль массы составляет менее десяти миллиграммов, что предполагает значительную ошибку при оценке производительности дозатора гравиметрическим методом. Дозирование Vx при более высокой температуре может вызвать изменение качественного состава вещества. Использование камеры испарителя с увеличенным внутренним диаметром (14 мм) позволяет при температуре 50oС для Vх достичь значимых величин убыли массы вещества, тем самым повысить точность определения производительности дозатора.

В табл.3 приведены сравнительные характеристики предлагаемого дозатора и ближайшего из аналогов дозирующего устройства.

Результаты табл.3 позволяют оценить преимущества предлагаемого дозатора перед известным: предложенная конструкция отличается универсальностью как по диапазону создаваемых концентраций, так и по перечню используемых веществ.

Формула изобретения

1. Дозатор потока смеси пары вещество-воздух, содержащий камеру испарителя для диффузии молекул с поверхности раздела жидкое вещество-пар в воздушный поток и штуцер для подсоединения к воздушному потоку, отличающийся тем, что дозатор содержит камеру испарителя для испарения веществ с высокой летучестью или камеру с увеличенным внутренним диаметром для испарения веществ с низкой летучестью, навинчивающуюся на нее крышку с каналом для ввода паров вещества в поток и второй штуцер для подсоединения к воздушному потоку.

2. Дозатор по п.1, отличающийся тем, что для осуществления гравиметрического контроля убыли вещества в дозаторе он выполнен из легкого, механически прочного материала и снабжен заглушками для герметизации входного и выходного штуцеров при взвешивании.

РИСУНКИ

Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4, Рисунок 5, Рисунок 6, Рисунок 7



 

Похожие патенты:

Изобретение относится к анализу газовоздушных смесей с каталитическим окислением и может быть использовано преимущественно для индикации в системах взрывопредупреждения и контроля степени взрывоопасности соответствующих объектов

Изобретение относится к измерительной технике, в частности к датчикам, служащим для измерения влажности и контроля герметичности в герметизированных корпусах микросборок и модулей электронной техники, и может быть использовано в электронной и других отраслях промышленности

Изобретение относится к области аналитической химии и может быть использовано для предпродажного определения жировых, смольных и зольных веществ в обезжиренных и обеззоленных лабораторных фильтрах

Изобретение относится к области обеспечения аналитического контроля процесса получения полимерной серы
Изобретение относится к области химической экологии

Изобретение относится к сельскому хозяйству, в частности к земледелию, и может найти применение при оценке физических свойств почв

Изобретение относится к области материаловедения и может быть использовано при проведении физико-химического анализа материалов, разработке технологий их производства и контроле технологических процессов

Изобретение относится к измерительной технике и может быть использовано для оперативного высушивания веществ с любой концентрацией солей, металлов и влаги

Изобретение относится к измерительной технике и может быть использовано для оперативных, точных и абсолютных измерений содержания влаги в веществах с любой концентраций солей, металлов и влаги таких, как хлебные изделия и хлебные полуфабрикаты, кондитерские изделия и их полуфабрикаты, жидкие растворы, цементные шламы, всевозможные шихты и другие

Изобретение относится к измерительной технике и может быть использовано для проведения оперативного контроля влажности сырья и продуктов в лабораторных условиях предприятий хлебопекарной, кондитерской, консервной и других отраслей промышленности

Изобретение относится к нефтедобывающей промышленности, а именно к лабораторным способам оценки эффективности ингибиторов отложений солей

Изобретение относится к области анализа материалов путем определения их химических и физических свойств, а именно к получению или подготовке образцов для исследования путем их разбавления, распыления или смешивания

Изобретение относится к области анализа материалов путем определения их химических и физических свойств, а именно к получению или подготовке образцов для исследования путем их разбавления, распыления или смешивания

Изобретение относится к технологии и технике отбора проб жидкости из трубопровода и может найти применение в нефтедобывающей и других отраслях промышленности
Изобретение относится к методам диагностики и может найти применение при подготовке гистологических и биологических образцов к микроскопическому исследованию
Изобретение относится к методам диагностики и может найти применение при подготовке гистологических и биологических образцов к микроскопическому исследованию

Изобретение относится к устройствам для исследования проб газа на их химический состав

Изобретение относится к области электронно-микроскопических исследований реальной микроструктуры твердых тел и может быть использовано для приготовления объектов из электропроводящих материалов для просвечивающей электронной микроскопии (ПЭМ)
Наверх