Полевой транзистор

 

Использование: в радиотехнических, СВЧ-устройствах и т.д. Структура полевого транзистора на основе нитридов Ga и Аl последовательно включает подложку, изолирующий слой, выполненный из AlyGa1-yN, канальный слой и барьерный слой, выполненный из AlzGa1-zN. Канальный слой выполнен из AlxGa1-xN, где 0,12>х>0,03, при этом на границе канального и изолирующего слоев 1yx+0,1, на границе канального и барьерного слоев 1zx+0,1, а толщина канального слоя находится в пределах от 3 до 20 нм, причем х, у, z - молярные доли Аl в составе соединения AlGaN. Изолирующий слой может быть выполнен из двух подслоев, при этом нижний, смежный с подложкой подслой имеет на границе с ней значение у в пределах от 0,5 до 0,7, на границе с верхним подслоем имеет значение у от 0,7 до 1, верхний подслой имеет на границе с нижним значение у от 0,7 до 1, которое монотонно уменьшается к границе с канальным слоем до значения у0,4. В барьерном и/или изолирующем слоях может быть выполнен легирующий -слой кремния или кислорода. Структура полевого транзистора может дополнительно содержать защитный слой, расположенный поверх барьерного слоя, выполненный из AlGaON. Техническим результатом изобретения является увеличение деградационной стойкости прибора. 3 з. п.ф-лы, 4 ил.

Изобретение относится к полупроводниковым приборам и может быть использовано в радиотехнических, СВЧ-устройствах и т.д.

Создание оптоэлектронных и микроэлектронных приборов на основе полупроводниковых соединений группы А3 с азотом (нитриды А3) весьма актуально ввиду значительного расширения функциональных возможностей этих приборов. В частности, возникла возможность изготовления СВЧ-полевых транзисторов, мощность которых в несколько раз больше, чем мощность таких транзисторов, выполненных на основе традиционных материалов (арсениды А3). Одновременно транзисторы на основе нитридов обладают уникальной термической стойкостью и могут работать в непрерывном режиме при температуре 300-500oС, что было абсолютно недоступно на традиционных приборах.

Однако существенной трудностью при промышленной реализации такого технического решения является склонность нитридных транзисторов к деградации, т. е. к быстрому изменению (ухудшению) характеристик прибора со временем. Эта деградация наблюдается во время работы прибора и, более того, зафиксировано ухудшение характеристик транзисторных полупроводниковых структур в отсутствие электрического тока. Показано, что подвижность и концентрация электронов в нитридной гетероструктуре произвольно меняются со временем, причем за несколько месяцев эти изменения достигают десятков процентов (S. Elhamri et al. Study of deleterious aging effects in GaN/AlGaN heterostructures. Journal of Applied Physics, vol. 93, 2, pp.1079-1082, 15 January 2003).

В условиях, соответствующих рабочим, т. е. с протеканием тока под действием приложенного напряжения, нитридные транзисторы изменяют свои характеристики за несколько часов, что недопустимо для реального применения.

Известен полевой транзистор на основе нитридов галлия и алюминия, структура которого последовательно включает: подложку, слой GaN, барьерный слой, выполненный из двух подслоев: Al0,2Ga0,8N, на нем GaN; второй вариант барьерного слоя - А10,30,7N, легированный Si, на нем нелегированный А10,30,7N. На структуре выполнены контакты: сток, исток и затвор с соответствующими промежутками между ними; далее было выполнено диэлектрическое покрытие MgO, Sc2O3 или SiNx. Между контактами диэлектрическое покрытие находится на барьерном слое и служит для защиты открытых поверхностей барьерного слоя от внешних воздействий, см. B. Luo et al. The role of cleaning conditions and epitaxial layer structure on reliability of Sc2O3 and MgO passivation on AlGaN/GaN HEMTS, Solid-State Electronics, 46, pp.2185-2190, 2002.

Транзисторы, содержащие слои MgO и Sc2O3, проявляют значительно меньшую деградацию, чем аналогичные приборы без защитных слоев.

Недостатком такого технического решения является то, что полученный благодаря защитным слоям уровень деградации остается достаточно высоким. Под нагрузкой (напряжение исток - сток 8 В, напряжение на затворе 1 В) через 13 часов ток сток - исток составил 90% от первоначального при защите структуры слоем MgO и 80% от первоначального при защите Sс2O3.

Для реальных применений характеристики транзистора должны меняться не более чем на 10% за тысячи часов работы или, для некоторых применений, за сотни часов, поэтому изменение тока сток - исток на 10% за 13 часов не обеспечивает возможности практического использования транзистора.

Известен также полевой транзистор на основе нитридов галлия и алюминия, структура которого последовательно включает: подложку, выполненную из SiC, изолирующий слой переменного состава толщиной 1 мкм, легирующий слой Al0,09Ga0,91N толщиной , легированный Si, канальный слой GaN толщиной , барьерный слой из трех подслоев: нелегированного Al0,3Ga0,7N толщиной , легированного Si Al0,3Ga0,7N толщиной , нелегированного Al0,3Ga0,7N толщиной , см. Narihiko Maeda et al. AlGaN/GaN Heterostructure Field - Effect Tronsistors with Back - Doping Design for High-Power Applicatios: High Current Density with High Transconductance Characteristics, Mat. Res. Soc. Symp. Proc. Vol. 743, 1931-1936, 2003.

В отличие от технического решения, описанного в статье B. Luo, данная конструкция транзистора сложнее (содержит большее число слоев) и имеет лучшие характеристики. В частности, транзистор имеет весьма высокие значения усиления и плотности электрического тока. Указанное устройство принято за прототип настоящего изобретения. Однако ему свойственны серьезные недостатки, которые обусловлены следующими обстоятельствами. Проводящий слой двумерного электронного газа образован в данной конструкции за счет эффекта, связанного с существованием поляризационных зарядов на границе AlGaN/GaN. Данный эффект наблюдается в нитридах А3 и не характерен для полупроводников А3В5. Поскольку поляризационные заряды не устойчивы во времени, особенно в рабочем режиме прибора, характеристики двумерного электронного газа меняются со временем вместе с перезарядкой встроенных заряженных поверхностей. Это приводит к быстрой деградации полевого транзистора.

В основу настоящего изобретения положено решение задачи увеличения деградационной стойкости прибора.

Согласно изобретению эта задача решается за счет того, что в полевом транзисторе на основе нитридов Ga и Аl, структура которого последовательно включает подложку, изолирующий слой, выполненный из AlyGa1-yN, канальный слой и барьерный слой, выполненный из AlzGa1-zN, канальный слой выполнен из AlxGa1-xN, где 0,12>х>0,03, при этом на границе канального и изолирующего слоев 1yx+0,1, на границе канального и барьерного слоев 1zx+0,1, а толщина канального слоя находится в пределах от 3 до 20 нм, причем х, у, z - молярные доли Аl в составе соединения AlGaN; изолирующий слой может быть выполнен из двух подслоев, при этом нижний, смежный с подложкой подслой имеет на границе с ней значение у в пределах от 0,5 до 0,7, на границе с верхним подслоем имеет значение y от 0,7 до 1, верхний подслой имеет на границе с нижним значение y от 0,7 до 1, которое монотонно уменьшается к границе с канальным слоем до значения у0,4; в барьерном и/или изолирующем слоях выполнен легирующий -слой кремния или кислорода; структура полевого транзистора дополнительно содержит защитный слой, расположенный поверх барьерного слоя, выполненный из AlGaON.

Заявителем не выявлены источники, содержащие информацию о технических решениях, идентичных настоящему изобретению, что позволяет сделать вывод о его соответствии критерию "новизна".

В отличие от известной конструкции, где двумерный электронный газ образуется за счет встроенных поверхностных зарядов, заявленное техническое решение обеспечивает устойчивость проводящего двумерного канала к возникающим по мере работы прибора изменениям встроенных зарядов. Данные изменения могут возникать как за счет внешних химических воздействий окружающей атмосферы, так и за счет флуктуационного дефектообразования со временем, причем оба эти процесса существенно активируются в режиме работы прибора; проводящий слой двумерного электронного газа образуется за счет примененного в конструкции слоя AlxGa1-xN, причем величина запрещенной зоны в прилегающих с двух сторон слоях превышает ширину зоны в данном слое; толщина этого слоя обеспечивает размерное квантование электронных состояний. Существенно, что материал этого слоя должен содержать не менее 0,03 молярной доли Аl, что обеспечивает особо высокую деградационную стойкость прибора.

Следует также отметить, что реализация дополнительных признаков (п.п.2-4 формулы изобретения) обеспечивает большее увеличение деградационной стойкости прибора в режиме непрерывного действия; ввиду увеличения электрического сопротивления нижней части гетероструктуры между подложкой и канальным слоем существует возможность использования не только изолирующих, но и проводящих подложек из карбида кремния, стоимость которых в несколько раз ниже, чем изолирующих, что может заметно понизить стоимость приборов.

Заявителем не выявлены какие-либо источники информации о влиянии указанных выше отличительных признаков изобретения на достигаемый технический результат. Это позволяет сделать вывод о соответствии заявленного технического решения критерию "изобретательский уровень".

Сущность изобретения поясняется чертежом, где изображены: на фиг. 1 - схема эпитаксиальной полупроводниковой структуры полевого транзистора по п.1 формулы изобретения; на фиг.2 - то же, по п.2 формулы изобретения; на фиг.3 - то же, по п.3 формулы изобретения; на фиг.4 - то же, по п.4 формулы изобретения.

Полевой транзистор на основе Ga и А1 в конкретном исполнении, соответствующем п.1 формулы изобретения, имеет структуру, которая включает последовательно: подложку 1, выполненную в конкретном примере из сапфира; изолирующий слой 2 из AlyGa1-yN, в конкретном примере y=0,5, толщина слоя 1 мкм; канальный слой 3, выполненный из AlxGa1-xN, где 0,12>х>0,03, толщина канального слоя от 3 до 20 нм, в конкретном примере х=0,04, толщина слоя 14 нм; барьерный слой 4 из AlzGa1-zN, в конкретном примере z=0,3, толщина слоя 20 нм; х, y, z - молярные доли Аl в составе соединения AlGaN; на границе канального и изолирующего слоев 1yх+0,1; на границе канального и барьерного слоев 1zx+0,1.

Согласно варианту по п.2 формулы изобретения изолирующий слой выполнен из двух подслоев: нижний, смежный с подложкой подслой 5 может иметь на границе с ней значение y в пределах от 0,5 до 0,7, а на границе с верхним подслоем 6 имеет значение y от 0,7 до 1; верхний подслой имеет на границе с нижним подслоем значение y от 0,7 до 1, которое монотонно уменьшается к границе с канальным слоем до значения y0,4.

Согласно варианту по п.3 формулы изобретения в барьерном и/или изолирующем слоях может быть выполнен легирующий -слой кремния или кислорода. В конкретном примере один легирующий -слой 7 выполнен в верхнем изолирующем подслое изолирующего слоя, а другой легирующий -слой 8 выполнен в барьерном слое.

Согласно варианту по п.4 формулы изобретения структура полевого транзистора дополнительно содержит защитный слой, расположенный поверх барьерного слоя, выполненный из AlGaON.

При выполнении полевого транзистора с использованием всех признаков, приведенных во всех пунктах формулы изобретения, он имеет в конкретном примере структуру, включающую подложку 1, выполненную из сапфира; нижний подслой 5 изолирующего слоя на границе с подложкой имеет значение y=0,5, на границе с верхним подслоем 6 имеет значение y=0,7; толщина нижнего подслоя составляет 0,7 мкм; верхний подслой на границе с нижним подслоем имеет значение y= 0,7, а на границе с канальным слоем значение y=0,3; толщина верхнего подслоя равна 0,4 мкм; в верхнем подслое выполнен легирующий -слой 7 кремния со слоевой концентрацией 11013 см-2; -слой 7 расположен на глубине 5 нм под границей изолирующего слоя с канальным; канальный слой 3 выполнен с х=0,04, толщина слоя составляет 14 нм; в барьерном слое 4 z=0,3, толщина слоя составляет 20 нм; в барьерном слое выполнен легирующий -слой 8 кремния со слоевой концентрацией 11013 см-2; -слой 8 расположен на глубине 10 нм под верхней границей барьерного слоя; защитный слой 9 AlGaON имеет толщину 8 нм, в этом слое отношение мольных концентраций Аl и Ga составляет 1:1, а отношение мольных долей кислорода и азота составляет 1:4.

Реализация признаков зависимых пунктов (2, 3, 4) обеспечивает дополнительное повышение деградационной стойкости транзистора.

Были изготовлены и испытаны два варианта полевого транзистора. В первом варианте были изготовлены 4 транзистора в соответствии с п.1 формулы изобретения, которые прошли деградационный тест в режиме постоянного электрического тока сток - исток при напряжениях исток - сток 7 В, смещение затвора 0,5 В, в течение 48 часов. Все транзисторы продемонстрировали уменьшение тока менее чем на 10%. Во втором варианте были изготовлены 14 транзисторов в соответствии со всеми пунктами формулы изобретения, транзисторы были подвергнуты деградационному тесту в режиме постоянного электрического тока, при этом напряжение исток - сток 9 В, смещение на затворе 1 В, в течение 240 часов. 8 транзисторов продемонстрировали изменение величины электрического тока менее чем на 7%, а 6 транзисторов - менее чем на 10%.

Вся структура, включая защитный слой, была в обоих вариантах выращена в едином процессе молекулярно-лучевой эпитаксии; контакт к базе выполнен поверх защитного слоя, а контакты сток и исток выполнены на предварительно протравленные области поверхности, глубина травления 102 нм.

Приведенные выше примеры подтверждают весьма малую скорость деградации транзисторов. Благодаря этому существенно увеличивается срок службы приборов.

Изобретение может быть реализовано как в заводских, так и в лабораторных условиях с использованием известных материалов и оборудования, обычно применяемого при изготовлении полупроводниковых приборов. Это подтверждает соответствие заявленного изобретения критерию "промышленная применимость".

Формула изобретения

1. Полевой транзистор на основе нитридов Ga и Al, структура которого последовательно включает подложку, изолирующий слой, выполненный из AlyGa1-yN, канальный слой и барьерный слой, выполненный из AlzGa1-zN, отличающийся тем, что канальный слой выполнен из AlxGa1-хN, где 0,12>x>0,03, при этом на границе канального и изолирующего слоев 1yx+0,1, на границе канального и барьерного слоев 1zx+0,1, а толщина канального слоя находится в пределах от 3 до 20 нм, причем х, у, z – молярные доли Al в составе соединения AlGaN.

2. Полевой транзистор по п.1, отличающийся тем, что изолирующий слой выполнен из двух подслоев, при этом нижний, смежный с подложкой подслой имеет на границе с ней значение у в пределах от 0,5 до 0,7, на границе с верхним подслоем имеет значение у от 0,7 до 1, верхний подслой имеет на границе с нижним значение у от 0,7 до 1, которое монотонно уменьшается к границе с канальным слоем до значения у0,4.

3. Полевой транзистор по п.1 или 2, отличающийся тем, что в барьерном и/или изолирующем слоях выполнен легирующий -слой кремния или кислорода.

4. Полевой транзистор по любому из пп.1-3, отличающийся тем, что его структура дополнительно содержит защитный слой, расположенный поверх барьерного слоя, выполненный из AlGaON.

РИСУНКИ

Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4



 

Похожие патенты:

Изобретение относится к электронной технике, а именно к полевым транзисторам на гетероструктурах с селективным легированием (ПТ ГСЛ)

Изобретение относится к электронной технике, преимущественно к производству МДП СБИС

Изобретение относится к аналоговой технике и может быть использовано в МДП-усилительных и коммутационных устройствах, предназначенных для функционирования при криогенных температурах

Изобретение относится к электронной технике, в частности к конструкции полевых транзисторов

Изобретение относится к гетероструктурам полупроводниковых приборов, главным образом полевых транзисторов

Изобретение относится к силовым вертикальным транзисторам, содержащим МОП-структуру, изготавливаемую с применением двойной диффузии, имеющим электроды истока (эмиттера) и затвора на одной поверхности подложки, а электрод стока (коллектора) - на противоположной поверхности подложки

Изобретение относится к области твердотельной электроники и может использоваться при создании устройств, предназначенных для усиления, генерирования и преобразования ВЧ- и СВЧ-колебаний

Изобретение относится к области полупроводниковой техники. Полупроводниковый прибор включает утоненную подложку из монокристаллического кремния р-типа проводимости, ориентированного по плоскости (111), с выполненным на ней буферным слоем из AlN, поверх которого выполнена теплопроводящая подложка в виде осажденного слоя поликристаллического алмаза толщиной, равной по меньшей мере 0,1 мм, на другой стороне подложки выполнена эпитаксиальная структура полупроводникового прибора на основе широкозонных III-нитридов, исток из AlGaN, затвор, сток из AlGaN, омические контакты к истоку и стоку, припой в виде слоя, включающего AuSn, медный пьедестал и фланец. При этом между истоком, затвором и стоком выполнен слой изолирующего поликристаллического алмаза. Изобретение обеспечивает повышение надежности полупроводникового прибора и увеличение срока его службы, а также позволяет упростить изготовление прибора с высоким значением теплоотвода от активной части. 2 н. и 1 з.п. ф-лы, 7 ил.

Изобретение относится к области полупроводниковой электроники. В предлагаемом приборе объединены три полевых транзистора в единую вертикальную структуру с каналами n- и p-типами проводимости, между которыми образуется электрический переход, при этом исток p-канала расположен напротив стока n-канала, а сток p-канала - напротив истока n-канала. Истоки каналов соединены между собой с помощью проводника и дополнительной области с n+-типом проводимости, на которой сформирован исток n-канала, а стоки каналов имеют отдельные выводы. В приборе может быть один затвор (трехэлектродный прибор - вариант 1) или два затвора (четырехэлектродный прибор - вариант 2), расположенных на другой (второй) боковой стороне каналов. Ток в каналах проходит в одном направлении и создает на переходе обратное напряжение, которое запирает каналы. Прибор может содержать более одной единичной структуры, при этом затворы являются общими для соседних структур. Изобретение позволяет уменьшить размеры, повысить быстродействие и увеличить ток и выходную мощность прибора. 3 з.п. ф-лы, 6 ил.

Изобретение относится к электронной технике и может быть использовано в качестве активных элементов СВЧ-устройств различного назначения. Мощный транзистор СВЧ с многослойной эпитаксиальной структурой содержит базовую подложку из кремния, теплопроводящий поликристаллический слой алмаза, эпитаксиальную структуру на основе широкозонных III-нитридов, буферный слой, исток, затвор, сток и омические контакты. Слой теплопроводящего поликристаллического алмаза имеет толщину 0,1-0,15 мм, а на поверхности эпитаксиальной структуры между истоком, затвором и стоком последовательно размещены дополнительный слой теплопроводящего поликристаллического алмаза, барьерный слой из двуокиси гафния и дополнительный барьерный слой из оксида алюминия. При этом барьерные слои из двуокиси гафния и оксида алюминия имеют суммарную толщину 1,0-4,0 нм, кроме того, они размещены под затвором, непосредственно на эпитаксиальной структуре в виде слоя из твердого раствора AlGaN n-типа проводимости. Технический результат заключается в увеличении теплопереноса от активной области транзистора и минимизации утечек тока. 2 з.п. ф-лы, 4 ил.

Изобретение относится к электронной технике и может быть использовано в качестве активных элементов СВЧ-устройств различного назначения. Мощный транзистор СВЧ содержит базовую подложку из кремния, теплопроводящий поликристаллический слой алмаза, эпитаксиальную структуру на основе широкозонных III-нитридов, буферный слой, исток, затвор, сток и омические контакты. При этом базовая подложка из кремния выполнена толщиной менее 10 мкм, слой теплопроводящего поликристаллического алмаза имеет толщину по меньшей мере, равную 0,1 мм, а на поверхности эпитаксиальной структуры последовательно размещены дополнительный слой теплопроводящего поликристаллического алмаза и барьерный слой из двуокиси гафния толщиной 1,0-4,0 нм, который в области затвора размещен под затвором, непосредственно на эпитаксиальной структуре в виде слоя из твердого раствора AlGaN n-типа проводимости. Технический результат заключается в повышении выходной СВЧ-мощности, эффективном отводе тепла от активной области транзистора и минимизации утечек тока. 2 з.п. ф-лы, 4 ил.

Изобретение относится к способу получения циклопропановых производных фуллеренов общей формулы 2 путем нагревания немодифицированного фуллерена с тозилгидразоном в присутствии растворителя и основания. При этом процесс ведут с тозилгидразоном эфира α-кетоуксусной кислоты общей формулы 1 где в общих формулах 1 и 2 радикал R обозначает линейный или разветвленный алифатический радикал Cn, где n находится в пределах от 1 до 50; радикал R1 обозначает ароматический радикал С6; Fu представляет собой фуллерен С60 или фуллерен С70, или высший фуллерен С>70, или смесь фуллеренов С60 и С70 (суммарное содержание 95.0-99.999% по весу) и высших фуллеренов (С>70, содержание 0.001-5.0% по весу). Способ позволяет получать производные фуллеренов, содержащие в своей структуре сложноэфирную группу, непосредственно присоединенную к циклопропановому фрагменту на фуллереновой сфере, используя доступные эфиры α-кетоуксусной кислоты. Изобретение также относится к применению циклопропановых производных фуллеренов общей формулы 2 в качестве полупроводниковых материалов для электронных полупроводниковых устройств, материалов для органического полевого транзистора и материалов для органической фотовольтаической ячейки. 6 н.п. ф-лы, 13 ил., 3 пр.

Изобретение относится к нитрид-галлиевым транзисторам с высокой подвижностью электронов (GaN HEMT) и в частности к конструкции GaN НЕМТ для высоковольтных применений. Нитрид-галлиевый транзистор с высокой подвижностью электронов выращивается на кремниевой подложке с нанесенной на нее темплейтной структурой толщиной 700-800 нм, состоящей из чередующихся слоев GaN/AlN толщиной не более 10 нм, между буферным и барьерным слоями внедряется спейсерный слой AlN толщиной не более 1 нм, на пассивационный слой наносится полевая пластина, электрически соединенная с затвором, расстояние между затвором и стоком и длина полевой пластины - взаимосвязанные величины и подбираются исходя из требуемого значения напряжения пробоя. Изобретение обеспечивает получение высоковольтного нитрид-галлиевого транзистора с высокой подвижностью электронов с высокими рабочими характеристиками при упрощении технологического цикла его создания, а также снижении требуемых для этого материальных затрат. 4 ил.

Изобретение относится к электронной технике, а именно к полупроводниковым приборам, предназначенным для усиления СВЧ-электромагнитных колебаний. Гетероструктурный модулировано-легированный полевой транзистор содержит фланец, пьедестал, гетероэпитаксиальную структуру, буферный слой, исток, затвор, сток и омические контакты. Пьедестал имеет толщину 30-200 мкм и выполнен из теплопроводящего слоя CVD поликристаллического алмаза с имплантированным Ni и с отожженными приповерхностными слоями с двух сторон. Поверх пьедестала расположена подложка из монокристаллического кремния толщиной 10-20 мкм, буферный слой. На поверхности гетероэпитаксиальной структуры, между истоком, затвором и стоком, последовательно размещены дополнительные слои теплопроводящего поликристаллического алмаза, барьерный слой из двуокиси гафния и барьерный слой из оксида алюминия. При этом барьерные слои выполнены с суммарной толщиной 1,0-4,0 нм. Кроме того, в области затвора барьерные слои размещены под затвором, непосредственно на эпитаксиальной структуре в виде слоя из твердого раствора AlGaN. Технический результат заключается в повышении теплоотвода от пьедестала и активной области транзистора, обеспечении минимальных утечек тока затвора и достижении наименьшего коэффициента шума в ГГц-диапазоне частот. 3 з.п. ф-лы, 6 ил.
Наверх