Способ изготовления керамического материала

 

Изобретение относится к области производства керамического материала, а именно к изготовлению режущего инструмента, применяемого для обработки чугуна, стали, сплавов на ее основе и других материалов. Способ изготовления керамического материала включает смешивание порошкообразной композиции оксидов алюминия, титана, магния, карбида титана и кубического нитрида бора в шаровой мельнице и горячее прессование под давлением, после смешивания шихту брикетируют под давлением 0,06-0,15 ГПа при комнатной температуре, затем отжигают при температуре 1200-1400С в течение 1-5 минут, а горячее прессование проводят в среде или аргона, или азота, или в вакууме под давлением 0,02-0,08 ГПа с выдержкой 5-20 минут, причем кубический нитрид бора используют с размером частиц 1-5 мкм, а оксиды и карбид шихты с размером частиц 0,1-1,0 мкм. Способ позволяет получить изделия с высокой износостойкостью, больших габаритов без применения специального энергетического оборудования для создания сверхвысоких давлений. 1 табл.

Изобретение относится к области производства керамического материала, в частности к изготовлению режущего инструмента, применяемого для обработки чугуна, стали, сплавов на ее основе и других материалов.

Известен керамический материал на основе кубического нитрида бора, спеченный под высоким давлением, содержащий 20-48% реакционной разлагающейся фазы, образованной из одного или нескольких соединений, содержащих кислород: Ti2AlN, Ti2AlC, АlСN (Япония JP 3035797 В2, 5017233 А, кл. С 04 В 35/58, публ. 24.04.2000). Для изготовления такого материала необходимо применение сверхвысоких давлений, что является его недостатком.

Известен способ изготовления керамических изделий, заключающийся в перемешивании исходных порошков кубического нитрида бора 10-80%, алмазного порошка 5-60%, карбидов, нитридов, карбонитридов металлов IVа и Vа подгрупп или карбидов VIa подгрупп в общей сложности 5-60%, добавки кубического карбонитрида и неизбежных примесей. Материал спекается при сверхвысоких давлениях (>5 ГПа) (заявка 62-19394, Япония МКИ4 С 04 В 35/58, 1987 г.).

Недостатком данного способа является низкая износостойкость, необходимость использования сложного энергетического оборудования для производства спекания при сверхвысоком давлении и, как следствие, высокая себестоимость получения изделий.

Наиболее близок к заявленному техническому решению способ изготовления материала, включающий перемешивание порошкообразной композиции, состоящей из 5-40% по объему волокнистого карбида кремния и/или оксида циркония, 10-40% по объему одного или более двух соединений типа карбида, нитрида или борида переходного металла группы IVа, Vа и VIа Периодической системы элементов и оксида алюминия, 2-15% по объему одного или более элементов типа железа, кобальта, никеля, алюминия и кремния, остальное кубический нитрид бора (заявка Японии 63-303029, МКИ С 22 С 29/16, 1988 г.). Для получения спеченного материала, предлагаемого данным патентом, порошкообразную композицию требуемого состава перемешивают в шаровой мельнице, смешанную композицию помещают в металлическую цилиндрическую матрицу и проводят спекание при температуре 1100-1673С под давлением 3-6 ГПа в продолжение от нескольких минут до десятков минут. Спеченные образцы припаивают к вершинам неперетачиваемых пластин из твердого сплава (прототип).

Данным способом могут быть получены изделия при использовании сверхвысоких давлений >3 ГПа, малых габаритов 4 мм, низкой износостойкостью, потому что в этом способе используется до 15% по объему одного или более элементов типа железа, алюминия и кремния. Как известно, эти металлы снижают износостойкость керамических материалов при обработке сталей и чугунов.

Задачей настоящего изобретения является разработка способа, позволяющего получить изделия с высокой износостойкостью, больших габаритов и без применения специального энергетического оборудования для создания сверхвысоких давлений.

Для достижения поставленной задачи в способе изготовления керамического материала, включающем смешивание порошкообразной композиции оксидов алюминия, титана, магния, карбида титана и кубического нитрида бора в шаровой мельнице и горячее прессование под давлением, после смешивания шихту брикетируют под давлением 0,06-0,15 ГПа при комнатной температуре, затем подвергают отжигу при температуре 1200-1400С в течение 15 минут, а горячее прессование проводят в среде или аргона, или азота, или в вакууме под давлением 0,02-0,08 ГПа с выдержкой 5-20 минут, причем кубический нитрид бора используют с размером частиц 1-5 мкм, а оксиды и карбид шихты с размером частиц 0,1-1,0 мкм.

Брикетирование шихты при комнатной температуре под давлением 0,06-1,5 ГПа после смешивания порошковой композиции с кубическим нитридом бора обеспечивает образование контактов кубического нитрида бора с частицами керамической композиции для получения активирующего слоя с ней в процессе окислительного отжига.

При давлении менее 0,06 ГПа брикет будет разрушаться.

При давлении более 1,5 ГПа будет происходить расслой, что приведет к расслаиванию брикета и его разрушению. В процессе нагрева брикета при отжиге, начиная с температуры 1200С, в окислительной атмосфере до 1400С идет переход кубической модификации нитрида бора в гексагональную. Процесс происходит на поверхности частица кубического нитрида бора размером 1-5 мкм. При этом, как известно, активность атомов бора и азота возрастает в 105-106 раза и присутствие ТiO2, МgO, Аl2O3 и ТiС вблизи поверхности кубического нитрида бора в виде мелкозернистых фракций размером 0,1-1,0 мкм способствует образованию легкоплавких соединений Аl8В2O5, МgTi2O5 и Аl2TiO5, что приводит к жидкофазному активированному спеканию при низких температурах и делает возможным получение изделий больших габаритов при более низких давлениях горячего прессования с высокой износостойкостью.

При температуре отжига менее 1200С не образуются легкоплавкие соединения, и нет эффекта снижения температуры спекания и давления прессования, и будут получаться изделия с низкой плотностью и, как следствие, с низкой износостойкостью.

При температуре более 1400С будет происходить переход кубического нитрида бора в гексагональный в значительных количествах, что приведет к снижению износостойкости.

Отожженные брикеты помещают в графитовые пресс-формы, в которых осуществляется горячее прессование в интервале температур 1200-1400С под давлением 0,02-0,08 ГПа в атмосфере инертного газа, азота или в вакууме с выдержкой 5-20 мин. Легкоплавкие соединения позволяют производить интенсивное активированное горячее прессование при низких температурах, низких давлениях, в результате чего получают высокоплотные заготовки больших габаритов с высокой износостойкостью.

При температуре ниже 1200С, и выдержке менее 5 минут, и давлении менее 0,02 ГПа изделия получаются неплотные с низкой износостойкостью. При температуре выше 1400, выдержке более 20 минут нитрид бора кубический переходит в гексагональный, в результате чего резко снижается износостойкость.

Пример

Кубический нитрид бора 15 мас.%, 15 мас.% карбида титана, 2 мас.% оксида магния, 5 мас.% оксида титана и 63 мас.% оксида алюминия перемешивали в шаровой мельнице, футерованной оксидом алюминия размольными телами из этого материала в течение 144 часов в среде этилового спирта. Полученную пульпу сушили при 120С. В результате получили шихту из кубического нитрида бора с размером частиц 1-5 мкм; ТiO2, МgО, ТiС и Аl2О3 с размером частиц 0,1-1,0 мкм. Из полученной таким образом шихты прессовали брикеты размером 131310 мм и 202010 мм холодным прессованием при удельном давлении 0,07 ГПа. Брикеты отжигали в течение 5 минут на воздухе при температуре 1250С.

Отожженные брикеты загружали в графитовые пресс-формы и подвергали горячему прессованию при температуре 1300С, давлении 0,07 ГПа с выдержкой 7 минут в атмосфере аргона.

Из полученных таким образом горячепрессованных заготовок получали с помощью алмазного инструмента режущие пластины формы SNGN 120408 (по ИСО) размером 12,7612,764,76 мм, на которых изготовляли шлифы для определения микротвердости и исследования режущих свойств.

Были испытаны резцы в следующих условиях:

обрабатываемый материал - чугун С428-30

Скорость резания 300 м/мин

Подача 0,2 мм/об

Глубина резания 0,5 мм

Результаты испытаний представлены в таблице.

Для сравнения в той же таблице приведены данные обычной оксидно-карбидной режущей керамики, полученной горячим прессованием в графитовых пресс-формах.

Как видно из таблицы, образцы, изготовленные при низких давлениях по предложенному способу, имеют большие габариты и обладают более высокой износостойкостью и твердостью, чем образцы-аналоги, полученные по традиционной технологии. Инструмент, изготовленный из этой керамики, демонстрирует высокие режущие свойства.

Формула изобретения

Способ изготовления керамического материала, включающий смешивание порошкообразной композиции оксидов алюминия, титана, магния, карбида титана и кубического нитрида бора и горячее прессование под давлением, отличающийся тем, что после смешивания шихту брикетируют под давлением 0,06-1,5 ГПа при комнатной температуре, затем подвергают отжигу при температуре 1200-1400С в течение 1-5 мин, а горячее прессование проводят в среде или аргона, или азота, или в вакууме под давлением 0,02-0,08 ГПа с выдержкой 5-20 мин, причем кубический нитрид бора используют с размером частиц 1-5 мкм, а оксиды и карбид шихты с размером частиц 0,1-1,0 мкм.



 

Похожие патенты:

Изобретение относится к порошковой металлургии, в частности к спеченным материалам на основе нитрида бора с кубической решеткой (cNB), которые могут использоваться в режущих инструментах
Изобретение относится к порошковой металлургии и может быть использовано в инструментальном производстве для оснащения лезвийных инструментов, работающих в условиях непрерывного и прерывистого резания закаленных сталей, чугунов, твердых сплавов и др

Изобретение относится к области сверхтвердых композиционных материалов на основе кубического нитрида бора (КНБ), которые могут найти применение в инструментальной промышленности для изготовления режущего инструмента
Изобретение относится к области получения сверхтвердых материалов в аппаратах высокого давления и температуры и может быть использовано в машиностроении при изготовлении лезвийного режущего инструмента

Изобретение относится к получению сверхтвердых материалов в аппаратах высокого давления и температуры
Изобретение относится к получению сверхтвердых материалов в аппаратах высокого давления и температуры и может найти применение в машиностроении при производстве лезвийного режущего инструмента

Изобретение относится к неорганической химии, а именно к технологии получения сверхтвердых материалов, и может быть использовано при изготовлении режущих элементов правящего, бурового, а также лезвийного инструмента для работы в условиях абразивного износа, ударных нагрузок и значительных усилий резания
Изобретение относится к области инструментального производства, в частности к получению композиционных материалов для режущих элементов на основе сверхтвердых частиц с объемным их содержанием в материале 75÷92%

Изобретение относится к области машиностроения и, в частности, к получению композиционных материалов на основе порошков алмаза и/или кубического нитрида бора, которые могут быть использованы, например, в качестве режущих элементов в различных инструментах: буровом, правящем, в инструментах для камнеобработки и стройиндустрии и др

Изобретение относится к области получения синтетических сверхтвердых материалов, в частности поликристаллического кубического нитрида бора, в условиях высоких давлений и температур для использования в химической, инструментальной, электронной и ряде других отраслей промышленности
Изобретение относится к производству поликристаллического материала (поликристалла) на основе кубического нитрида бора
Изобретение относится к производству поликристаллического кубического нитрида (поликристалла) с мелкозернистой структурой
Изобретение относится к области производства различных видов металлообрабатывающих инструментов: резцов, фрез, притиров, в частности, к получению спеченного композиционного материала, изготовленного из порошков кубического нитрида бора. Способ заключается в формовании порошков кубического нитрида бора и пропитке полученной прессовки расплавом связующего из кремния и никеля при давлении 20-40 кбар и температуре 1200-1400°C, лежащих в области стабильности кубического нитрида бора диаграммы состояния. Количество пропиточного материала составляет 10,0-25,0% масс. Количество никеля в сплаве с кремнием составляло 50-75% масс. Использование сплава кремния с никелем позволяет пропитывать прессовку из порошков кубического нитрида бора на большую глубину при достаточно низких давлениях, при этом получать композиционный материал с высокой термостойкостью, теплопроводностью, износостойкостью, а также электропроводностью, которая позволит из материала формировать изделия необходимых размеров и форм простыми способами такими, как электроэрозионная обработка. 1 з.п. ф-лы, 1 табл.
Изобретение относится к области конструкционных материалов на основе карбида кремния, применяемых в оборудовании для нефтедобывающей и нефтеперерабатывающей промышленности (торцевые уплотнения нефтяных насосов и погружных агрегатов, подшипники скольжения и т.п.) и в ряде других отраслей промышленности. Технический результат изобретения - повышение прочности и твердости композиционного материала без усложнения технологии изготовления из него изделий. Способ включает формование заготовки на основе композиции из мелкодисперсного наполнителя в виде порошка кубического нитрида бора или карбида бора и временного связующего, обжиг сформованной заготовки при конечной температуре, соответствующей температуре полного удаления летучих продуктов из временного связующего, и силицирование. В композиции для формования заготовки в качестве мелкодисперсного наполнителя используют смесь вышеуказанных порошков с углеродом активной к кремнию разновидности с размером частиц не более 20 мкм (сажи или коллоидного графита), а силицирование после проведения обжига заготовки осуществляют парожидкофазным методом путем капиллярной конденсации паров кремния при нагреве заготовок до температуры 1300-1500оС, а тиглей с кремнием - до температуры, превышающей температуру заготовок. Кубический нитрид бора или карбид бора и углерод в их смеси берут в количестве 70-80 и 20-30 масс.%. 1 з.п. ф-лы, 1 табл.

Изобретение относится к области технической керамики, в частности, к износостойкому композиционному наноструктурированному материалу на основе кубического нитрида бора (cBN), содержащему фазы нитрида кремния (Si3N4) и оксида алюминия (Al2O3), предназначенному для применения в режущих инструментах, используемых для обработки закаленных сталей с твердостью до 65 HRC и чугунов, а также способу получения этого материала. Предложен износостойкий композиционный наноструктурированный материал на основе кубического нитрида бора с матрицей из нитрида кремния (Si3N4) и оксида алюминия (Al2O3), содержащий компонент в виде наноразмерной фазы нитрида алюминия (AIN), упрочняющий матрицу и границы между зернами нитрида бора и матрицей, при объемном содержании компонентов: cBN - 49-52%; матричная фаза - 42-45%; наноразмерная фаза AIN - 4-6%. Указанный материал может иметь покрытие состава AlXTi(1-X)N, где x=0,55÷0,65, нанесенное методом физического газофазного осаждения. Для создания материала с указанными характеристиками предложен способ, включающий стадии смешивания исходных порошков кубического нитрида бора, оксида алюминия, нитрида кремния и спекания полученной смеси в условиях высоких давлений и высоких температур (НРНТ), при котором процесс спекания материала осуществляют при температуре от 1450 до 1550°C и давлении в диапазоне 3,5-3,9 ГПа в течение 20 с. Для получения микроструктуры, включающей наноразмерную фазу из нитрида алюминия, процесс спекания осуществляют в присутствии алюминия в газовой фазе. 2 н. и 3 з.п. ф-лы, 1 табл. 2 ил., 11 пр.
Наверх