Пьезоэлектрический тепломеханический двигатель-генератор

 

Пьезоэлектрический тепломеханический двигатель-генератор относится к тепломеханическим двигателям, работающим при малом температурном градиенте, и пьезоэлектрическим генераторам. Для непосредственного преобразования энергии гравитационного поля в электрическую и механическую энергию пьезоэлектрический тепломеханический двигатель-генератор, содержащий вал, установленный в опорах с возможностью вращения, и радиально расположенные нитиноловые элементы, обладающие эффектом памяти формы и соединенные с массами, на которые воздействует гравитационное поле, дополнительно снабжен пьезоэлектрическими элементами с электродами, электроды соединены через выключатель с концами нитиноловых элементов, а массы воздействуют через рычаги на пьезоэлектрические элементы и периодически деформируют их. Технический результат - расширение эксплуатационных и функциональных возможностей путем непосредственного преобразования энергии гравитационного поля в электрическую и механическую энергию. 1 ил.

Предлагаемое изобретение относится одновременно к тепломеханическим двигателям, работающим при малом температурном градиенте, и пьезоэлектрическим генераторам. Пьезоэлектрический тепломеханический двигатель-генератор сочетает свойства тепломеханического двигателя и пьезоэлектрического генератора. Может быть использован во всех областях народного хозяйства.

Известен пьезоэлектрический генератор, содержащий пьезоэлектрический элемент с электродами, работающий на изгиб (см. книгу В.В. Лавриненко, И.А. Карташева, B.C. Вишневского. Пьезоэлектрические двигатели. М.: Энергия, 1980 г., стр. 102-103).

Известный пьезоэлектрический генератор преобразует приложенную к ротору механическую энергию в электрическую, однако его конструкция не дозволяет осуществлять непосредственное преобразование энергии гравитационного поля в электрическую.

Известен тепломеханический двигатель, содержащий проходящие через зоны нагрева и охлаждения колесо с радиально расположенными изогнутыми биметаллическими элементами с массами на свободных концах (патент СССР 19407, кл. F 03 G 7/00, 1929 г.).

Известная конструкция двигателя не позволяет непосредственно преобразовывать энергию гравитационного поля в механическую энергию без внешних источников тепловой энергии.

Наиболее близким к предлагаемому изобретению является тепломеханический двигатель, содержащий частично погруженное в резервуар с горячей водой колесо с валом и радиально расположенными нитиноловыми элементами, обладающими эффектом памяти формы (SU 1094984 А, МПК 7 F 03 G 7/06, опубл. 30.05.1984 г. - прототип).

Известная конструкция двигателя не позволяет непосредственно преобразовывать энергию гравитационного поля в механическую энергию без внешних источников тепловой энергии.

Задача предлагаемого изобретения заключается в расширении эксплуатационных и функциональных возможностей путем непосредственного преобразования энергии гравитационного поля в электрическую и механическую энергию.

Технический результат достигается тем, что пьезоэлектрический тепломеханический двигатель-генератор, содержащий вал, установленный в опорах с возможностью вращения, и радиально расположенные нитиноловые элементы, обладающие эффектом памяти формы и соединенные с массами, на которые воздействует гравитационное поле, снабжен пьезоэлектрическими элементами с электродами, электроды электрически соединены через выключатель с концами нитиноловых элементов, а массы воздействуют через рычаги на пьезоэлектрические элементы и периодически деформируют их.

Наличие отличительных признаков обусловливает соответствие заявляемого технического решения критерию "новизна".

Заявляемое техническое решение соответствует также критерию "изобретательский уровень", поскольку не обнаружено решений с признаками, отличающими заявляемое техническое решение от прототипа, и критерию "промышленная применимость".

Возможность достижения технического результата подтверждается нижеследующими теоретическими выводами: нагревание нитиноловых элементов возможно не только путем контакта их с нагретой жидкостью или газом, но и пропусканием по ним электрического тока (см. а.с. 612784, a.c. 598773, a.с. 700888, a.c. 817143). При деформации пьезоэлектрических элементов, которая возникает в результате воздействия на них силы веса массы, в цепи, соединяющей электроды пьезоэлемента, в момент замыкания ее выключателем возникает импульс тока (см. книгу С.П. Калашникова. Электричество. М.: Наука, 1977 г., стр.97-104, рис. 72, 74, 75). Следовательно, если создать условия, при которых будет возникать периодическая деформация пьезоэлементов, а по нитиноловым элементам периодически будет протекать ток, который их будет периодически нагревать, то в результате изменения размеров нитиноловых элементов возникнет дисбаланс масс. Если же при этом создать условия, при которых ток будет периодически протекать в нитиноловых элементах, расположенных с одной стороны от вертикальной оси симметрии, и в тот же самый момент времени не будет тока в нитиноловых элементах, расположенных с другой стороны от вертикальной оси симметрии, то вал двигателя придет во вращение под воздействием постоянно поддерживающегося дисбаланса масс.

Периодическую деформацию пьезоэлементов можно создать, если привести внешним толчком двигатель во вращение, при этом пьезоэлементы будут работать преимущественно на изгиб. Пьезоэлемент, работающий на изгиб, описан в книге С.Г. Калашникова. Электричество. М.: Наука, 1977 г., на стр.104, рис.75.

Условия, при которых ток будет периодически протекать в нитиноловых элементах, расположенных с одной стороны от вертикальной оси симметрии, и в тот же самый момент времени не будет тока в нитиноловых элементах, расположенных с другой стороны от вертикальной оси симметрии, можно создать конструктивно различными способами.

На чертеже схематично представлен общий вид пьезоэлектрического тепломеханического двигателя-генератора (промежуточные элементы конструкции не показаны).

Массы 1 закреплены на нитиноловых элементах 2, обладающих эффектом памяти формы. Нитиноловые элементы 2 закреплены на рычагах 3, которые шарнирно установлены на диске 4 с одной степенью свободы в вертикальной плоскости. Шарнирное соединение обозначено позицией 5. Рычаги 3 с одной стороны зафиксированны упорами 6, которые неподвижно закреплены на диске 4 и ограничивают движение (поворот) рычагов 3 против часовой стрелки. На диске 4 неподвижно закреплены пьезоэлементы 7 с электродами (на чертеже электроды не показаны). Электроды пьезоэлементов 7 электрически соединены проводником (проводом) 8 с концами нитиноловых элементов 2. Нитиноловые элементы 2 электрически изолированы от рычагов 3 и масс 1. Между пьезоэлектрическими элементами 7 и рычагами 3 установлены диэлектрические прокладки 9. Диск 4 выполнен из диэлектрического материала и установлен на валу 10. На диске 4 установлены по окружности концевые выключатели 11, а на опоре 12 установлены замыкающий сектор 13 и замыкающий сектор 14. Проводники 8 разомкнуты концевыми выключателями 11 (на чертеже условно-схематично изображен один концевой выключатель 11). Замыкающий сектор 13 установлен по вертикальной оси симметрии (на входе в правый верхний квадрант координатной плоскости). Замыкающий сектор 14 установлен по горизонтальной оси симметрии (на выходе из правого верхнего квадранта координатной плоскости). Замыкающие сектора 13 и 14 прикреплены к опоре 12 на таком расстоянии от плоскости диска 4, что обеспечивают замыкание концевых выключателей 11 при их входе в зону расположения замыкающих секторов. Все концевые выключатели 11 установлены на диске 4 строго под соответствующими им пьезоэлементами 7 (на чертеже виден только один выключатель).

Для того чтобы двигатель начал работать, ему надо сообщить толчок внешней силой. В начальный момент движения пьезоэлемент 7, находящийся в крайнем верхнем положении, не испытывает изгибающих нагрузок и его электроды не заряжены. После начала движения (по часовой стрелке, как указано на чертеже) соответствующий этому пьезоэлементу концевой выключатель 11 выйдет из зацепления с замыкающим сектором 13 и будет находиться в выключенном состоянии, т. е. электроды пьезоэлемента будут разомкнуты. По мере дальнейшего движения по окружности этот пьезоэлемент будет испытывать все возрастающий изгибающий момент от воздействия массы 1, который передается на пьезоэлемент через нитиноловый элемент 2 и рычаг 3. В результате этого воздействия возникнет соответствующая ему деформация пьезоэлемента, а в результате деформации пьезоэлемента на его электродах появится разность потенциалов. При входе этого пьезоэлемента и соответствующего ему концевого выключателя в зону расположения замыкающего сектора 14 концевой выключатель включится (замкнет электроды пьезоэлемента через проводник 8) и по нитиноловому элементу 2 пройдет импульс тока, который его нагреет. В результате нагрева нитиноловый элемент 2 изменит свои размеры (выпрямится и увеличит свою габаритную длину) и переместит закрепленную на нем массу 1, что создаст общий дисбаланс масс, который будет поддерживать вращение двигателя.

При выходе пьезоэлемента 7 и соответствующего ему концевого выключателя 11 из зоны расположения замыкающего сектора 14 концевой выключатель выключится (разорвет цепь) и на электродах останутся индуцированные заряды. При дальнейшем повороте на 270o нитиноловый элемент 2 будет охлаждаться окружающим воздухом и снова изменит свои размеры в противоположном направлении (примет ту форму и размеры, которые он имел до нагрева), поддерживая тем самым общий дисбаланс масс. При вхождении в зону замыкающего сектора 13 концевой выключатель 11 снова включится (замкнет цепь) и по нитиноловому элементу 2 пройдет импульс тока разряда, который снова его нагреет. Дальше процесс повторится и в результате постоянно поддерживающегося дисбаланса масс двигатель будет вращаться со скоростью, при которой нитиноловые элементы будут успевать охлаждаться.

Формула изобретения

Пьезоэлектрический тепломеханический двигатель-генератор, содержащий вал, установленный в опорах с возможностью вращения, и радиально расположенные нитиноловые элементы, обладающие эффектом памяти формы и соединенные с массами, на которые воздействует гравитационное поле, отличающийся тем, что он снабжен пьезоэлектрическими элементами с электродами, электроды электрически соединены через выключатель с концами нитиноловых элементов, а массы воздействуют через рычаги на пьезоэлектрические элементы и периодически деформируют их.

РИСУНКИ

Рисунок 1



 

Похожие патенты:

Изобретение относится к приборостроению, а именно к угловым многокоординатным вибродвигателям для навигационного оборудования, и обеспечивает вращение сфероидального ротора вокруг его центра по любой траектории

Изобретение относится к пьезоэлектрическим микродвигателям для приборов в системах автоматики, приборостроения, робототехники

Изобретение относится к пьезоэлектрическим двигателям, предназначенным для работы в составе прямых (безредукторных) приводов исполнительных устройств в автомобильной промышленности (приводы стеклоочистителей, стеклоподъемников, антенн, замков дверей и т.д.), в системах автоматики, бытовой техники и др

Изобретение относится к пьезоэлектрическим двигателям, предназначено для использования в качестве привода устройств микроробототехники и позволяет повысить надежность в работе твердотельного двигателя, осуществить совместную работу нескольких двигателей от одного источника питания переменного тока и расширить функциональные возможности устройства

Изобретение относится к механизмам, предназначенным для преобразования радиального перемещения пьезокерамики в линейное перемещение подвижного элемента, и может использоваться в исполнительных органах автоматических устройств

Изобретение относится к электротехнике, в частности к электрическим двигателям, использующим электромеханические преобразователи, и может быть использовано при разработке реверсивных вибродвигателей

Изобретение относится к области точного машиностроения и предназначено для микро- и наноскопических перемещений различных объектов

Изобретение относится к пьезомотору. Технический результат - улучшенная передача силы приводным пальцем на ротор. Пьезомотор содержит статор, ротор и по меньшей мере один удерживаемый статором и приводящий ротор в движение приводной палец. Приводной палец выполнен с возможностью взаимодействия по меньшей мере с одним пьезоэлементом. Свободный конец приводного пальца предназначен для перемещения прижимаемой к кольцевой поверхности ротора колодки захвата. Свободный конец приводного пальца удерживается с возможностью радиального перемещения между двумя выступами колодки захвата. Колодка захвата во время приводного движения приводного пальца прижата по меньшей мере одним пьезоактюатором в ритме приводного движения приводного пальца к ротору и выполнена с возможностью совместного поворота с пьезоактюатором соразмерно величине отклонения приводного пальца в направлении привода и обратно вокруг оси ротора. 14 з.п. ф-лы, 9 ил.

Изобретение относится к многослойному пьезоэлектрическому элементу, содержащему слои пьезоэлектрического материала и электроды, включая в себя внутренний электрод, при этом слои пьезоэлектрического материала и электроды укладываются поочередно; каждый слой пьезоэлектрического материала содержит в качестве основного компонента оксид металла типа перовскита, представленный с помощью общей формулы (1), и марганец, включенный в состав оксида металла типа перовскита (Ba1-xCax)a(Ti1-yZry)O3, где 1,00≤a≤1,01, 0,02≤x≤0,30, 0,020≤y≤0,095 и y≤x (1); и содержание марганца на металлической основе по отношению к 100 весовым частям оксида металла типа перовскита составляет 0,02 весовые части или более и 0,40 весовых частей или менее. Также изобретение относится к пьезоэлектрическому элементу, головке для выброса жидкости, устройству для выброса жидкости, ультразвуковому двигателю, оптическому устройству, электронному устройству. Изобретение обеспечивает бессвинцовый пьезоэлектрический элемент, который устойчиво работает в широком диапазоне температур. 7 н. и 4 з.п. ф-лы, 6 табл., 10 ил., 55 пр.

Изобретение относится к многослойному пьезоэлектрическому элементу, содержащему слои пьезоэлектрического материала и электроды, включая в себя внутренний электрод, при этом слои пьезоэлектрического материала и электроды укладываются поочередно; каждый слой пьезоэлектрического материала содержит в качестве основного компонента оксид металла типа перовскита, представленный с помощью общей формулы (1), и марганец, включенный в состав оксида металла типа перовскита (Ba1- xCax)a(Ti1-yZry)O3, где 1,00≤a≤1,01, 0,02≤x≤0,30, 0,020≤y≤0,095 и y≤x (1); и содержание марганца на металлической основе по отношению к 100 весовым частям оксида металла типа перовскита составляет 0,02 весовые части или более и 0,40 весовых частей или менее. Также изобретение относится к пьезоэлектрическому элементу, головке для выброса жидкости, устройству для выброса жидкости, ультразвуковому двигателю, оптическому устройству, электронному устройству. Изобретение обеспечивает бессвинцовый пьезоэлектрический элемент, который устойчиво работает в широком диапазоне температур. 7 н. и 4 з.п. ф-лы, 6 табл., 10 ил., 55 пр.

Изобретение относится к электротехнике и может быть использовано в приборах и системах автоматики, приборостроения, робототехники, авиакосмической, автомобильной отраслях. Технический результат состоит в повышении кпд, удельной мощности уменьшении габаритных размеров, возможности обратного вращения, в увеличении ресурса и надежности конструкции за счет уравновешенности конструкции и вращательно-фрикционного режима передачи момента на ротор. Вращательный пьезоэлектрический двигатель содержит неподвижный корпус, ротор с валом в подшипниковых опорах неподвижного корпуса. Внутри неподвижного корпуса коаксиально размещен подвижный корпус, который соединен с неподвижным корпусом упругими элементами. На подвижном корпусе жестко закреплены два пьезоэлемента с толкателями для прямого вращения ротора и два пьезоэлемента с толкателями для обратного вращения ротора. Пьезоэлементы с толкателями с одним направлением вращения размещены диаметрально противоположно. Источник питания пьезоэлементов с толкателями имеет один выходной канал для прямого вращения ротора и один выходной канал для обратного вращения ротора. Один из пьезоэлементов с толкателем для обоих направлений вращения подключен через фазовращатель источника питания. 2 ил.

Изобретение относится к области электротехники и может быть использовано в устройствах микро- и нанопозиционирования различного назначения, замыкания контактов, системах автоматики, индикации и других. Техническим результатом является упрощение конструкции, уменьшение массогабаритных показателей устройства, повышение надежности, технологичности, уменьшение трудоемкости изготовления устройства. В устройстве и способе управления самочувствительным ультрозвуковым пьезоэлектрическим двигателем управление скоростью перемещения (вращения) ультразвукового пьезоэлектрического двигателя (УЗПД) осуществляется путем регулирования частоты управляющего сигнала, используя сигнал обратной связи, получаемый от рабочих пьезоэлементов УЗПД, выполняющих функцию первичного преобразователя с помощью вторичного преобразователя, выполненного на оптопаре с резистивным выходным элементом. Способ управления самочувствительным ультразвуковым пьезоэлектрическим двигателем позволяет использовать в качестве источника сигнала обратной связи рабочие пьезоэлементы самочувствительного УЗПД для регулировки частоты управляющих сигналов, что повышает эффективность работы УЗПД при изменении климатических условий и нагрузочных усилий. 2 н. и 1 з.п. ф-лы, 7 ил.
Наверх