Способ определения характеристик сорбции газов материалами

 

Способ применим в области исследования физических и химических свойств материалов и может быть использован для определения одновременно коэффициента растворимости и начальной концентрации газов материалами. Сущность изобретения: образец материала, содержащий растворенный газ, растворимость и концентрация которого в образце определяется, помещают в камеру, которую затем вакуумируют, и далее измеряют равновесную концентрацию газа в камере. После этого камеру повторно вакуумируют и снова измеряют равновесную концентрацию газа. Затем вычисляют искомые коэффициенты растворимости и начальную концентрацию газа в материале по формулам

где - коэффициент растворимости газа в материале, моль/(м3Па); - степень заполнения камеры, равная отношению объема камеры к объему образца; с1, с2 - равновесные концентрации газа, моль/м3; u0 - начальная концентрация газа в материале, моль/м3; R - универсальная газовая постоянная, Пам3 (мольК); Т - температура, К. Достигается повышение точности и упрощение определения. 1 ил.

Изобретение относится к области исследования физических и химических свойств материалов и может быть использовано в контрольно-измерительной технике химических лабораторий для определения коэффициентов растворимости и концентраций газов в материалах, а также для прогнозирования уровней концентраций газов в герметичных объемах, в которых находятся материалы, содержащие эти газы.

Известен способ определения характеристик сорбции газов материалами (а.с. СССР № 1291851, МПК G 01 N 15/08, БИ № 7/87 от 23.02.87), заключающийся в размещении испытуемого образца, герметично закрепленного в камере так, что разделяет ее на рабочую и измерительные камеры, одновременно с размещением сравнительного образца в дополнительной камере, пропускании газа через первую камеру с исследуемым образцом, измерении перепада давлений посредством дифференциального манометра, соединяющего измерительные камеры и вычислении газопроницаемости.

Однако известный способ достаточно трудоемок и недостаточно точен, а устройство камеры сложно.

Известен в качестве прототипа способ определения характеристик сорбции газов материалами (заявка № 04852356, МПК G 01 N 7/14, БИ № 5/98 от 20.02.98).

В известном способе в изолированные друг от друга камеры одновременно помещают образцы материала, в котором определяют коэффициент растворимости и начальную концентрацию газа, растворимость которого в материале подчиняется закону Генри. При этом размеры образцов выбирают таким образом, чтобы была обеспечена разная степень заполнения камер. Камеры освобождают от воздуха и затем проводят газохроматографическим методом контроль содержания газов, выделяющихся из образцов. Далее измеряют равновесные количества выделившихся газов и по формулам определяют коэффициент растворимости и начальную концентрацию газа в материале:

где - коэффициент растворимости газа в материале, моль/(м3·Па);

c1, с2 - равновесные концентрации газа в первой и второй камерах соответственно, моль/м3;

1, 2 - степень заполнения первой и второй камер соответственно, равная отношению объема камеры к объему соответствующего образца;

R - универсальная газовая постоянная, Па·м3/(моль·К);

Т - температура, К.

К недостаткам известного способа относится сложность конструкции используемого устройства и трудоемкость способа, а также сравнительно невысокая точность. Последнее вызвано тем, что при использовании двух образцов материала неизбежно появляется погрешность, обусловленная невозможностью обеспечить абсолютную идентичность образцов.

Задачей авторов является разработка способа определения характеристик сорбции газов материалами, характеризующегося высокими точностью, простотой и малой трудоемкостью при определении исследуемых параметров.

Новый технический результат заключается в повышении точности измерения характеристик сорбции, упрощении конструкции используемого прибора и в снижении трудоемкости способа.

Указанные задача и новый технический результат обеспечиваются тем, что в известном способе, включающем размещение испытуемого образца в изолированной камере, вакуумирование камеры, измерение равновесной концентрации в камере выделившегося газа, растворимость которого в материале подчиняется закону Генри, определение начальной концентрации газа в материале образца и вычисление коэффициента растворимости, в соответствии с прелагаемым способом после измерения равновесной концентрации в камере выделившегося газа проводят повторное вакуумирование и повторно измеряют равновесную концентрацию выделившегося газа в камере, а коэффициент растворимости и начальную концентрацию газа в материале образца вычисляют по следующим формулам:

где - коэффициент растворимости газа в материале, моль/(м3·Па);

- степень заполнения камеры, равная отношению объема камеры к объему образца;

c1, с2 - равновесные концентрации газа, моль/м3;

u0 - начальная концентрация газа в материале, моль/м3;

R - универсальная газовая постоянная, Па·м3/(моль·К);

Т - температура, К.

Предлагаемый способ поясняется следующим образом.

Для измерения характеристик сорбции используют изолированную камеру, которая является одновременно и измерительной. На чертеже изображено устройство рабочей камеры, где 1 - камера, 2 - исследуемый образец, 3 - средства для осуществления процесса вакуумирования камеры, 4 - регистрационные приборы.

Образец материала, содержащий растворенный газ, растворимость которого в образце определяется, помещают в рабочую камеру, которую затем вакуумируют и далее измеряют равновесную концентрацию выделившегося газа в этой камере. После этого камеру повторно вакуумируют и повторно производят измерения равновесной концентрации выделившегося в камере газа. Таким образом, в отличие от прототипа, используемая в предлагаемом способе камера выполняет как функцию рабочей, так и измерительной камеры.

Измерение равновесных концентраций выделившегося в камере газа во всех случаях осуществляют газохроматографическим методом.

Затем вычисляют искомые коэффициенты растворимости и начальную концентрацию газа в материале по формулам (1), (2), устанавливающим зависимость определяемых параметров от равновесных концентраций газа в материале, зарегистрированных при первом и втором измерении соответственно, а также степени заполнения камеры.

Использование математической формулы, как показали эксперименты, позволяет точно рассчитать определяемые величины при двухкратном измерении равновесных концентраций газа.

Экспериментальные исследования подтвердили высокую точность способа за счет исключения необходимости использования второго образца, что вносило дополнительную погрешность в измерения. Такой прием позволил упростить и используемое в способе устройство и весь способ, поскольку в этом случае отпадает необходимость в подключении второй камеры и выполнении всех достаточно трудоемких и продолжительных по времени мероприятий по ее подготовке и проведению измерений в ней с соблюдением строго обозначенных условий (выполнение условий идентичности образцов, использования несообщающихся между собой камер, различной степени заполнения объема этих камер), как это предусмотрено в прототипе. Как видно, предлагаемый способ по сравнению с прототипом является менее трудоемким.

Таким образом, использование предлагаемого способа обеспечивает повышение точности измерения характеристик сорбции, упрощение конструкции используемого прибора и снижение трудоемкости способа за счет исключения дополнительных операций по достижению равновесия во второй камере.

Возможность промышленной применимости заявляемого способа подтверждается следующим примером.

Пример.

В изолированную камеру, имеющую объем газового пространства 1,680 дм3, поместили через 48 ч после изготовления образец из пенополивинилхлорида с кажущейся плотностью 350 кг/см3. Объем образца составил 0,183 дм3. При этом величина степени заполнения была равна =9,18. Далее провели вакуумирование камеры и затем измерение содержания метакрилонитрила, выделившегося в камере, методом газовой хроматографии. Равновесная концентрация этого газа в камере составила c1=1,052·10-3 моль/м3. Затем вновь проводили повторное вакуумирование камеры и повторное измерение равновесной концентрации газа метакрилонитрила, выделившегося в камере. Для этого случая равновесная концентрация газа оказалась равной с2=8,706·10-4 моль/м3. Температура при проведении измерений была равна 21±1,5С. После расчета по математическим формулам (1) и (2) получены следующие значения указанных величин: коэффициент растворимости газа метакрилонитрила в материале пенополивинилхлориде =3,5 моль/(м3·Па), начальное содержание газа метакрилонитрила в материале пенополивинилхлориде u0=9,1·10-2 моль/м3.

Реализация предлагаемого способа проводилась в лабораторных условиях на опытном образце камеры.

Как показала опытная проверка способа, в ходе его реализации обеспечены высокая точность, упрощение конструкции используемого прибора и снижение трудоемкости способа.

Формула изобретения

Способ определения характеристик сорбции газов материалами, включающий размещение испытуемого образца в изолированной камере, вакуумирование камеры, измерение равновесной концентрации в камере выделившегося газа, растворимость которого в материале образца подчиняется закону Генри, определение начальной концентрации газа в материале образца и вычисление коэффициента растворимости, отличающийся тем, что после измерения равновесной концентрации в камере выделившегося газа проводят повторное вакуумирование и повторно измеряют равновесную концентрацию выделившегося газа в камере, а коэффициент растворимости и начальную концентрацию газа в материале образца вычисляют по следующим формулам:

где - коэффициент растворимости газа в материале, моль/(м3Па);

- степень заполнения камеры, равная отношению объема камеры к объему образца;

с1, с2 - равновесные концентрации газа, моль/м3;

u0 - начальная концентрация газа в материале, моль/м3;

R - универсальная газовая постоянная, Пам3 (мольК);

Т - температура, К.

РИСУНКИ

Рисунок 1



 

Похожие патенты:

Изобретение относится к измерительной технике, определяющей газосодержание жидкости, и решает задачу оперативного контроля концентрации газовой фазы (нерастворенного газа) в потоке жидкости технологических контуров различных отраслей промышленности, преимущественно на ЯЭУ

Изобретение относится к области измерительной техники, предназначенной для определения концентрации газов в жидкости, в частности для определения концентрации кислорода в питательной и других водах теплоиспользующих установок, системах холодного и горячего водоснабжения

Изобретение относится к анализу физико-механических свойств материалов, а именно пористой структуры и сорбционных свойств разнообразных объектов, таких как мембраны, катализаторы, сорбенты, фильтры, электроды, породы, почвы, ткани, кожи, строительные материалы и др., и может быть использовано в тех областях науки и техники, где они применяются

Изобретение относится к области исследования физических и химических материалов, в частности к определению коэффициентов растворимости и концентраций газов в материалах

Изобретение относится к измерительной технике, а именно к определению концентрации газов, растворенных в жидкостях, в частности газов в воде для теплоэлектростанций или газов в теплоносителях для АЭС, и может быть использовано в химической, нефтехимической, нефтеперерабатывающей промышленности и других областях техники

Изобретение относится к устройствам для анализа и может быть использовано для определения объемного содержания нерастворенного газа, содержащегося в рабочей жидкости гидроприводов

Изобретение относится к определению адсорбционной емкости адсорбентов, а конкретно к определению динамической емкости цеолита NaA, используемого при криогенной очистке аргона от кислорода

Изобретение относится к области экспериментального исследования физико-химических свойств газов, жидкостей и твердых тел и позволяет повыг сить точность определения сорбции

Тензометр // 1723496
Изобретение относится к устройствам измерения величин, характеризующих доступность почвенной влаги, и может быть использовано в системах автоматического управления поливом в мелиорации

Изобретение относится к экспериментальному изучению физико-химических свойств газа и твердых тел и позволяет снизить трудоемкость определения сорбции газа углем за счет устранения диффузионных процессов

Изобретение относится к области измерительной техники, может быть использовано в горной промышленности для анализа состава рудничного воздуха и позволяет повысить точность анализа

Изобретение относится к области горного дела и позволяет повысить точность определения сорбционной емкости

Изобретение относится к материаловедению и предназначено для определения количества и состава продуктов газовыделения материалов

Изобретение относится к измерительной технике и позволяет повысить точность измерения количества водорода в металлах и сплавах
Наверх