Туннельный нанотурбокомпрессор

 

Использование туннельного нанотурбокомпрессора в газотурбостроении позволяет благодаря применению технологичной конструкционной керамики успешно решить актуальную проблему создания эффективных газотурбинных двигателей супермалой мощности. Сфера использования таких ГТД имеет широкий спектр - от применения их в космических кораблях, в энергетических установках с электрохимическими топливными элементами и в других энергетических системах (например, в парогазовых установках) до использования в качестве двигателя транспортных средств, в частности автомобилей. Сущность изобретения: во-первых, для повышения кпд нанотурбомашин предложено использовать в их проточных частях специальные туннельные каналы, течение газа в которых осуществляется при высоких числах Рейнольдса, и, следовательно, при малом гидравлическом сопротивлении, во вторых, для повышения вибрационной надежности турбокомпрессора его цилиндрический ротор выполнен безвальным, с размещением газостатических опорных и упорных подшипников на периферии ротора. 2 з.п.ф-лы, 1 ил.

Изобретение относится к газотурбостроению, в частности, к высокотемпературным керамическим газотурбинным двигателям с турбомашинами минимальных размеров.

Известны керамические турбины минимальных размеров [1, 2]. Имея только 4 мм в диаметре, колесо такой радиальной турбины было изготовлено из карбида кремния технологией реактивного ионного давления. При этом лопаточный аппарат турбины создан на базе сопловой и рабочей радиальных решеток обыкновенных турбинных профилей. Такие решетки широко используются в центростремительных турбинах обычных и максимальных размеров. Недостатками такой конструкции являются: во-первых, низкий кпд малорасходной турбомашины минимальных размеров, обусловленный недопустимо малыми высотами сопловых и рабочих лопаток, и, во-вторых, сложность обеспечения вибрационной надежности вальной конструкции ротора. Конструкция [1] принята в качестве ближайшего аналога настоящего изобретения.

Целью изобретения является, во-первых, повышение кпд турбомашин минимальных размеров - центробежного компрессора и центростремительной турбины - и, во-вторых, повышение вибрационной надежности турбокомпрессора, содержащего такие турбомашины.

Эта цель достигается тем, что:

во-первых, турбомашины центробежный компрессор и центростремительная турбина снабжена туннельными каналами малых расходов, течение воздуха и высокотемпературного газа в которых не сопряжено с возникновением в них чрезмерно высокого гидравлического сопротивления, приводящего к недопустимому снижению кпд турбомашин;

во-вторых, подвижный элемент турбокомпрессора выполнен в виде безвального составного цилиндрического, преимущественно короткого, ротора, свободно установленного в составном статоре на газостатических опорных и упорных подшипниках, причем концы составного ротора выполнены в виде рабочих колес турбомашин минимальных размеров, а цилиндрические и торцевые плоскоконические вращающиеся поверхности концов ротора выполнены в виде рабочих поверхностей газостатических подшипников, сопряженных с соответствующими рабочими неподвижными поверхностями газостатических подшипников, содержащимися на составном статоре.

Изобретение поясняется соответствующей конструктивной схемой, изображенной на чертеже, где представлен продольный разрез туннельного нанотурбокомпрессора.

На чертеже обозначено:

1 - наружный диск рабочего колесо нанотурбины;

2 - внутренний диск рабочего колеса нанотурбины;

3 - соединительный диск безвального ротора;

4 - внутренний диск рабочего колеса нанокомпрессора;

5 - наружный диск рабочего колеса нанокомпрессора;

6 - туннельная проточная часть рабочего колеса нанокомпрессора;

7 - наружный компрессорный диск статора;

8 - туннельная проточная часть статора нанокомпрессора;

9 - внутренняя соединительная часть статора;

10 - фильтр тонкой очистки воздуха при входе в газостатические упорные и опорные подшипники;

11 - туннельная проточная часть статора нанотурбины;

12 - наружный турбинный диск статора;

13 - туннельная проточная часть рабочего колеса нанотурбины;

14 - газостатические опорные подшипники;

15 - газостатические упорные подшипники.

Туннельный нанотурбокомпрессор состоит из безвального ротора, включающего элементы 1-5, 6, 13 и 14, 15, составного статора, включающего элементы 7-12 и 14, 15. При этом элементы 1 и 2, 2 и 3, 3 и 4, 4 и 5, 7 и 8, 8 и 12 попарно соединены между собой диффузионной сваркой. В результате такого соединения образованы составные безвальный ротор и статор туннельного нанотурбокомпрессора, первый из которых установлен на втором с возможностью свободного вращения в статоре на газостатических опорных и упорных подшипниках.

Радиальные и осевые зазоры в газостатических подшипниках лежат в пределах r=0,08-0,10 мм и z=0,025-0,030 мм соответственно, расход воздуха на все подшипники составляет 2-3% от расхода воздуха через нанотурбокомпрессор.

Расчетные параметры нанотурбокомпрессора следующие:

- начальная температура газа перед нанотурбиной Т3=1350С;

- степень повышения давления в нанокомпрессоре Пк=3-3,5;

- внутреннее кпд нанокомпрессора и нанотурбины лежат в пределах k=0,6-0,62, т=0,62-0,65.

В качестве фильтров тонкой очистки использованы питатели, изготовленные из пористой алюмоборонитридной керамики.

Материалом всех элементов нанотурбокомпрессора служит принципиально новая алюмоборонитридная безусадочная и равнопрочно свариваемая диффузионным методом конструкционная керамика (3).

Туннельные проточные части нанокомпрессора и нанотурбины выполнены в виде особых туннельных каналов с поперечными сечениями, описанными замкнутыми кривыми второго и более высоких порядков, а также лемнискатой и другими кривыми. Эффект туннельных каналов проточных частей турбомашин и соответствующего увеличения их кпд получен благодаря существенному увеличению критерия Рейнольдса потоков рабочих тел в нанокомпрессоре и в нанотурбине за счет увеличения гидравлического диаметра каждого туннельного канала по сравнению с лопаточными турбомашинами.

Благодаря принятой конструкции опорных и упорных газостатических подшипников, рабочие поверхности которых образованы на периферии безвального ротора, ротор обладает высокой критической частотой вращения, многократно превышающей рабочую частоту вращения нанотурбокомпрессора и является в связи с этим хорошо уравновешенной и динамически высоко устойчивой системой, свободной от возникновения опасных автоколебаний.

Нанотурбокомпрессор является основным элементом турбореактивного газотурбинного двигателя (ГТД).

Запуск такого газотурбинного двигателя осуществляется, как обычно, путем раскручивания ротора и зажигания камеры сгорания, после чего ГТД выходит на устойчивый режим холостого хода. Форсирование реактивной тяги ГТД осуществляется путем подачи в камеру сгорания дополнительного количества топлива.

В процессе раскручивания ротора, от компрессора к газостатическим подшипникам поступает сжатый воздух, который обеспечивает всплывание ротора и устранение контакта между ротором и статором.

Вся мощность нанотурбины поглощается нанокомпрессором. При этом свободная мощность потока газа, выпускаемого из нанотурбины, генерирует реактивную тягу за счет превышения количества движения выпускаемых газов по сравнению с количеством движения поступающих в ГТД воздуха и топлива.

Источники информации:

1. Turbines on a Dime. Steven Acheley. Mechanical Engineering, 78 Oktober 1997, p.78-81.

2. How insects point the way ahead in modern warfare. DERA news, September 2000, p.8-9.

3. A.Soudarev, V.Grichaev, P.Avran. Procede de fabrication d’une piese ceramique strukturale frittee en nitrure d’aluminium, патент Франции №9616135 от 27.12.1996.

Формула изобретения

1. Туннельный нанотурбокомпрессор, содержащий сблокированные нанотурбину и нанокомпрессор минимальных размеров, вращающиеся в рабочем состоянии в газостатических подшипниках, отличающийся тем, что он выполнен в виде цилиндрического короткого безвального ротора, свободно установленного в статоре, причем один из концов ротора представляет собой радиально-осевую центростремительную нанотурбину, а второй - радиально-осевой центробежный компрессор, и что на концах ротора наружные цилиндрические и торцевые плоскоконические поверхности выполнены в виде рабочих опорного и упорного газостатических подшипников соответственно.

2. Турбинный нанотурбокомпрессор по п.1, отличающийся тем, что его детали выполнены преимущественно из алюборонитридной конструкционной керамики.

3. Туннельный нанокомпрессор по п.1, отличающийся тем, что каналы турбины выполнены преимущественно кривыми второго и более высокого порядков, например эллипс, овал, окружность, лемниската и другие.

РИСУНКИ

Рисунок 1



 

Похожие патенты:

Изобретение относится к теплообменным аппаратам, в которых теплоносители не смешиваются друг с другом, и может быть использовано, например, в системах вентиляции и кондиционирования воздуха для теплообмена между заборным и вытяжным воздушными потоками

Изобретение относится к области машиностроения

Изобретение относится к вентиляторостроению, в частности к центростремительным вентиляторам

Изобретение относится к компрессоростроению и позволяет повысить КПД и надежность работы компрессора

Изобретение относится к компрессорной установке с компрессором, с линией всасывания и с отводящей линией, с блоком управления, который управляет работой компрессора и/или работой соседних модулей

Настоящее изобретение относится к центростремительному нагнетательному компрессору для системы вентиляции, включающему: кожух, вход для воздуха в кожухе, выход для воздуха в кожухе, крыльчатку и лопастный диск, причем слой центробежных лопастей, и слой центростремительных лопастей, расположены на внутренней стороне крыльчатки, слой центробежных лопастей и слой центростремительных лопастей расположены в шахматном порядке с интервалами в осевом направлении. Центробежные лопасти формируют центробежный канал, и центростремительные лопасти формируют центростремительный канал. Направляющие стенки для защиты края крыльчатки от потока воздуха расположены на наружных сторонах центробежного канала и центростремительного канала, и реверсивные каналы края крыльчатки расположены между направляющими стенками для защиты края крыльчатки от потока воздуха и центробежными лопастями и между направляющими стенками для защиты края крыльчатки от потока воздуха и центростремительными лопастями. Изобретение направлено на получение компрессора простой конструкции, высокого КПД и широкого диапазона применения, а также экономии энергии. 9 з.п. ф-лы, 17 ил.

Раскрыты ротор сверхзвукового компрессора и способ сжатия текучей среды. Ротор содержит первый и второй роторные диски, первый набор и второй набор роторных лопаток. Первый набор и второй набор роторных лопаток соединены с первым и вторым роторными дисками и расположены между ними. Кроме того, первый набор роторных лопаток смещен от второго набора роторных лопаток. Ротор содержит первый набор проточных каналов, ограниченных первым набором роторных лопаток, расположенных между первым и вторым роторными дисками. Аналогично ротор содержит второй набор проточных каналов, ограниченных вторым набором роторных лопаток, расположенных между первым и вторым роторными дисками. Кроме того, ротор содержит наклонный участок сжатия, расположенный на поверхности роторной лопатки напротив поверхности соседней роторной лопатки. 3 н. и 14 з.п. ф-лы, 8 ил.
Наверх