Компенсатор расширения объема теплоносителя

 

Изобретение относится к ядерно-космической и термоядерной технике и жидкометаллическим системам охлаждения и может быть использовано в высокотемпературных ЯЭУ с жидкометаллическим теплоносителем преимущественно космического назначения. Сущность изобретения: компенсатор содержит узел подсоединения к контуру теплоносителя и герметичный корпус с газовым объемом и устройством разделения газ-теплоноситель, выполненным в виде капиллярной структуры, гидравлически соединенной с узлом подсоединения к контуру теплоносителя и к газовому объему, в котором в зоне газового объема и, по крайней мере, в части зоны устройства разделения газ-теплоноситель у внутренней стенки корпуса размещена фитильная структура, гидравлически соединенная с капиллярной структурой устройства разделения газ-теплоноситель. Технический результат: повышение надежности работы контура теплоносителя и всей энергетической установки, в том числе в режимах с перегрузками и вибрациями. 1 ил.

Изобретение относится к ядерной, термоядерной и космической технике и может быть использовано в ядерно-энергетических установках (ЯЭУ) с жидкометаллическим теплоносителем, преимущественно космического назначения.

В космических ЯЭУ, где сброс непреобразованного тепла термодинамического цикла возможен лишь излучением в космическое пространство, используют высокотемпературные системы охлаждения с жидкометаллическими теплоносителями (преимущественно эвтектическим сплавом NаК, Nа и Li). Сплав NаК используют в энергоустановках со сбросом тепла при температурах 800-1000, а литий - при 1000-1200 К и выше. Нагрев теплоносителя от комнатной до рабочей может проводиться как на стартовой площадке непосредственно перед запуском ракеты-носителя с ЯЭУ в космос, так и после вывода космической ЯЭУ на рабочую или промежуточную орбиту. При нагреве теплоносителя происходит увеличение его объема, поэтому в жидкометаллических контурах систем охлаждения имеется компенсатор расширения объема теплоносителя, часто называемого компенсационной емкостью.

Известен компенсатор расширения объема литиевого теплоносителя контура стендового прототипа космической ЯЭУ с литиевым теплоносителем [1]. Он выполнен в виде так называемого расширительного бака, т.е. герметичного корпуса, часть которого заполнена нейтральным газом. Расширительный бак устанавливается в самой верхней части контура. При нагреве теплоносителя его объем увеличивается и дополнительный объем теплоносителя выдавливается в расширительный бак. При этом объем газа уменьшается, а его давление увеличивается.

При наличии силы тяжести газ всегда находится в верхней части расширительного бака. Поэтому, если газ не растворяется в теплоносителе (и не взаимодействует с ним), то никаких специальных устройств для разграничения жидкого теплоносителя и газа не требуется. Компенсаторы расширения объема в виде расширительного бака хорошо работают в наземных условиях. Однако в космических условиях при отсутствии силы тяжести газ из компенсатора объема может попасть в теплоноситель, так как в условиях невесомости нет силы, удерживающей газ в определенной части объема расширительного бака. Такой компенсатор может работать в космосе при условии создания в системе искусственного силового поля, в котором бы происходило разделение фаз.

Известен компенсатор расширения объема теплоносителя, описанный в [2]. Компенсатор содержит герметичный корпус с газовым объемом и узлом подсоединения к контуру теплоносителю. Такой компенсатор расширения объема может быть установлен в любой части контура. При нагреве теплоносителя контура его объем увеличивается и дополнительный объем через узел подсоединения выдавливается в компенсатор, при этом объем газа в компенсаторе уменьшается, а его давление несколько увеличивается.

Такие компенсаторы могут работать в наземных условиях при наличии силы тяжести, при условии, что газ не реагирует с теплоносителем и не растворяется в нем. В этом случае за счет силы тяжести будет четкое разделение газа и жидкого теплоносителя с образованием границы газ-жидкий теплоноситель.

Однако в космических условиях отсутствует сила тяжести, в результате чего газ и жидкий теплоноситель могут перемешиваться, образуя газожидкостную смесь. Такая смесь при термоциклировании может попасть из компенсатора в контур теплоносителя, который пузырек газа может перенести к насосу, что в свою очередь может привести к отказу насоса и соответственно всей ЯЭУ.

Наиболее близким к изобретению по технической сущности является компенсатор расширения объема теплоносителя, предложенный в [3]. Компенсатор содержит герметичный корпус с газовым объемом, узел подсоединения к контуру теплоносителя и устройство разделения границы газ-теплоноситель, которое выполнено в виде капиллярной структуры, гидравлически соединенной с узлом подсоединения к теплоносителю и газовому объему. Капиллярная структура может быть выполнена в виде рулонов сетки или фольги с отверстиями, или в виде трубок с отверстиями. Между капиллярной структурой и узлом подсоединения к контуру теплоносителя может быть установлен газовый фильтр.

Такие компенсаторы могут эффективно работать как в наземных условиях при наличии силы тяжести, так и в космосе в невесомости при условии, что газ не реагирует с теплоносителем и не растворяется в нем. В этом случае за счет капиллярных сил будет четкое разделение газа и жидкого теплоносителя с образованием границы газ-жидкий теплоноситель в капиллярной структуре.

Однако в процессе выведения в космос с помощью ракеты-носителя или разгонного блока действуют достаточно высокие перегрузки и вибрации, в результате которых жидкий теплоноситель из капиллярной структуры может попасть в газовый объем компенсатора, а затем в условиях невесомости осесть на стенки корпуса в газовом объеме. Это может привести к нарушению работы контура теплоносителя, в том числе такой опасной ситуации, когда газовый пузырек может попасть из компенсатора в контур теплоносителя, который затем перенесется к насосу, что в свою очередь может привести к отказу насоса и, соответственно, всей ЯЭУ.

Задачей изобретения является повышение надежности работы компенсатора и, следовательно, всего контура теплоносителя, за счет обеспечения сбора и возврата теплоносителя, случайно или в результате перегрузок, попавшего в газовый объем компенсатора.

Указанная задача решается в компенсаторе расширения объема теплоносителя, содержащим узел подсоединения к контуру теплоносителя и герметичный корпус с газовым объемом и устройством разделения газ-теплоноситель, выполненным в виде капиллярной структуры, гидравлически соединенной с узлом подсоединения к контуру теплоносителя и к газовому объему, в котором у внутренней стенки корпуса в зоне газового объема и по крайней мере в части зоны устройства разделения газ-теплоноситель размещена фитильная структура, гидравлически соединенная с капиллярной структурой устройства разделения газ-теплоноситель.

На чертеже приведена конструкционная схема компенсатора расширения объема теплоносителя.

Компенсатор содержит корпус 1 и узел 2 подсоединения к контуру теплоносителя (на чертеже не показан). Часть 3 внутреннего объема корпуса является свободной и заполнена газом, например, нейтральным (аргоном, гелием и др.), т.е. является газовым объемом компенсатора. Внутри корпуса 1 размещается капиллярная структура, в части 4 которой находится газ (тот же, что и в газовом объеме 3), а в части 5 - теплоноситель. Части 4 и 5 капиллярной структуры как бы разделены образующейся в результате действия капиллярных сил границей 6 раздела газ-жидкость (газ-теплоноситель). Капиллярная структура в части 4 гидравлически соединена с газовым объемом 3, а в части 5 - с узлом 2 подсоединения к контуру теплоносителя. В зоне газового объема 3 и в части 4 и 5 зоны капиллярной структуры у внутренней стенки корпуса 1 размещена фитильная структура 7, гидравлически соединенная в месте 8 контакта с капиллярной структурой частей 4 и 5.

Фитильная структура (как и капиллярная) может быть выполнена в виде рулонов сетки или перфорированной фольги (с отверстиями) и может быть зафиксирована относительно корпуса 1 (на чертеже не показано), а капиллярная структура - относительно фитильной структуры 7 или корпуса 1 (на чертеже не показано).

Компенсатор расширения объема теплоносителя работает следующим образом.

В исходном состоянии теплоноситель в жидкой (или твердой) фазе находится в узле 2 подсоединения к контуру теплоносителя, фитильной структуре 7 и занимает часть 5 пористой капиллярной структуры. В газовом объеме 3 и в не заполненной теплоносителем части 4 капиллярной структуры находится газ, обычно нейтральный, например, аргон, гелий или их смесь. Газ находится под давлением, обеспечивающем нормальную работу насоса контура теплоносителя без кавитации, обычно до нескольких атмосфер, например, для лития это от 0,1 до 1 атм.

При запуске энергетической установки в космосе проводится расплавление теплоносителя (если он был в твердом состоянии) во всем контуре, включая компенсатор, с помощью специальной пусковой системы (на чертеже не показана). После расплавления теплоносителя в узле 2, в фитильной структуре 7 и в части 5 капиллярной структуры компенсатора находится жидкий теплоноситель. Далее проводится подъем тепловой мощности энергетической установки, например реактора ЯЭУ, что привадит к росту температуры теплоносителя во всем контуре. Это в свою очередь вызывает увеличение объема жидкого теплоносителя в контуре. Увеличение объема в контуре компенсируется выдавливанием жидкого теплоносителя через узел 2 в часть 5 капиллярной структуры. В результате граница раздела 6 газ-теплоноситель передвигается с увеличением объема части 5 капиллярной структуры, заполненной жидким теплоносителем. При этом давление газа в газовом объеме 3 несколько увеличивается. Так продолжается до достижения номинальной тепловой мощности энергетической установки и соответственно рабочей температуры теплоносителя (обычно от 800-900 до 1100-1300 К). За счет капиллярных сил жидкий теплоноситель удерживается в части 5 капиллярной структуры и не происходит смешивания теплоносителя с газом, заполняющим часть 4 капиллярной структуры и свободный объем 3. При уменьшении тепловой мощности происходит уменьшение температуры теплоносителя контура с соответствующим уменьшением его объема, в результате часть теплоносителя из объема части 5 капиллярной структуры поступает через узел 2 в контур теплоносителя (на чертеже не показан), компенсируя уменьшение объема теплоносителя в контуре.

Описанная выше работа компенсатора является расчетным режимом работы. Однако возможны и нерасчетные режимы. Так, например, в процессе выведения в космос действуют достаточно высокие перегрузки, а также и вибрации, в результате которых жидкий теплоноситель из части 5 капиллярной структуры может попасть в газовый объем 3 компенсатора.

Если бы не было фитильной структуры 7, то этот теплоноситель в виде капелек мог бы осесть на стенки корпуса 1 в зоне газового объема 3. Это в дальнейшем, например, при пуске ЯЭУ, могло бы привести к нарушении работы контура теплоносителя, в том числе к такой опасной ситуации, когда газовый пузырек мог бы попасть из компенсатора в контур теплоносителя, что могло бы привести к отказу насоса и, соответственно, всей ЯЭУ. Однако при наличии фитильной структуры 7 у стенок корпуса 1 этого не произойдет. При любых перегрузках, вибрации, да и в условиях невесомости попавшие в газовый объем 3 капельки теплоносителя попадут на поверхность фитильной структуры 7. Так как фитильная структура 7 гидравлически соединена в месте 8 контакта с капиллярной структурой, то за счет капиллярных сил фитильной структуры 7 избыток теплоносителя вернется в часть 5 капиллярной структуры, возвращая систему в исходное нормальное состояние.

Кроме выполнения основной функции (компенсации температурного изменения объема теплоносителя при нагреве или охлаждении), рассматриваемый компенсатор с негерметичным разделением границы газ-теплоноситель позволяет обезгаживать теплоноситель в процессе эксплуатации энергетической установки. Так, например, в ЯЭУ с реакторами на тепловых нейтронах с гидрид-циркониевым замедлителем (термоэмиссионных реакторах-преобразователях типа "Топаз") в процессе эксплуатации гидрид разлагается и водород проникает и накапливается в натрий-калиевом теплоносителе. Рассматриваемый компенсатор в принципе позволяет хотя бы часть этого газа выделить из теплоносителя в газовый объем 3 компенсатора.

Таким образом, предлагаемый компенсатор расширения объема теплоносителя повышает надежность работы контура теплоносителя и всей энергетической установки, в том числе в режимах вывода с перегрузками, вибрациями, а также и в других нерасчетных режимах.

Источники информации

1. Ефимов В.П., Левин М.Н. Методы градуировки и поверки высокотемпературных измерителей расхода и давления теплоносителя систем охлаждения ЯЭУ //Научн. техн. сборн. Ракетно-космическая техника. Труды РКК "Энергия" им. С.П.Королева. Серия 12: Изд. РКК "Энергия", г. Королев Моск. обл., 1996, в.2-3: Космические термоэмиссионные ЯЭУ и ЭРДУ большой мощности, ч.2, стр. 226.

2. Доллежаль Н.Н. Ядерные энергетические установки. M.: Энергоатомиздат, 1983 г., с. 388-389.

3. Патент RU 2176828 С1. Компенсатор расширения объема теплоносителя. МКИ7 G 21 D 1/02, 10.12.2001, бюл. №34.

Формула изобретения

Компенсатор расширения объема теплоносителя, содержащий узел подсоединения к контуру теплоносителя и герметичный корпус с газовым объемом и устройством разделения газ - теплоноситель, выполненным в виде капиллярной структуры, гидравлически соединенной с узлом подсоединения к контуру теплоносителя и к газовому объему, отличающийся тем, что в зоне газового объема и, по крайней мере, в части зоны устройства разделения газ - теплоноситель у внутренней стенки корпуса размещена фитильная структура, гидравлически соединенная с капиллярной структурой устройства разделения газ - теплоноситель.

РИСУНКИ

Рисунок 1



 

Похожие патенты:

Изобретение относится к вспомогательным элементам и системам космических ядерных энергоустановок (ЯЭУ)

Изобретение относится к ядерной, термоядерной и космической технике и может быть использовано в высокотемпературных ядерно-энергетических установках с жидкометаллическим теплоносителем

Изобретение относится к устройству для газации водородом жидкого теплоносителя первого контура реактора, охлаждаемого водой под давлением, причем реактор, охлаждаемый водой под давлением, снабжен емкостью компенсатора объема и по меньшей мере одним подключенным за ней насосом высокого давления

Изобретение относится к ядерным установкам водо-водяного типа

Изобретение относится к космической технике, а именно к устройствам выдвижения рабочих модулей космического аппарата, и может применяться в раздвижных космических ядерных энергоустановках

Изобретение относится к средствам противометеорной защиты элементов космических объектов, преимущественно слаботочных электрокоммуникаций в виде жгутов-проводов на космических ядерных энергоустановках

Изобретение относится к области космической техники, а именно к устройствам выдвижения рабочих модулей космического аппарата (КА), и может найти применение в раздвижных космических ядерных энергетических установках, в которых требуется отодвижение реактора от приборного отсека КА для обеспечения допустимого уровня ионизирующих излучении на этот отсек

Изобретение относится к области ядерной техники и может быть использовано при создании транспортабельных и стационарных ядерных паропроизводящих установок

Изобретение относится к области атомной энергетики и может быть использовано в ядерных реакторах с тепловыделяющими сборками на основе микротвэлов

Изобретение относится к вспомогательным элементам ядерных энергоустановок (ЯЭУ) космических аппаратов (КА)

Изобретение относится к атомной технике и может быть использовано в ядерных энергетических установках с водоводяными реакторами с паровой системой компенсации давления

Изобретение относится к ядерным энергетическим установкам водо-водяного типа, а более конкретно к системам удаления паро-газовой смеси из первого контура для предотвращения образования опасной концентрации кислорода и водорода в отдельных местах первого контура и для предовращения срыва естественной циркуляции в нем

Изобретение относится к ядерной, термоядерной и космической технике и может быть использовано в ядерно-энергетических установках (ЯЭУ) с жидкометаллическим теплоносителем, преимущественно космического назначения

Изобретение относится к теплообменной технике и предназначено для использования в системе водоподготовки при подпитке питательной водой второго контура в стояночном режиме при поддержании ядерной энергетической установки (ЯЭУ)

Изобретение относится к области теплотехники тяжелых жидкометаллических теплоносителей и может быть использовано в исследовательских, испытательных стендах и установках атомной техники с реакторами на быстрых нейтронах. В охладителе перед патрубком подвода охлаждающей воды установлен регулятор ее расхода, а перед ним - задатчик температуры, вход которого соединен с выходом термопреобразователя, установленного на патрубке отвода жидкометаллического теплоносителя. Технический результат - повышение эффективности теплообмена за счет автоматизации процесса. 1 з.п. ф-лы, 1 ил.

Изобретение относится к контролю ЯЭУ с водяным теплоносителем. Система содержит комплекс измерения активности анализируемой среды, включающий датчик радиоактивного излучения (6) и устройство отбора и транспортировки анализируемой среды к датчикам радиоактивного излучения (6), и информационно-вычислительное устройство (10). На каждом контролируемом участке трубопровода (1) дополнительно установлены, по крайней мере, два комплекса измерения активности среды, включающие датчики радиоактивного излучения (6), которые избирательно-чувствительны к излучению азота-16. Датчики радиоактивного излучения (6) расположены по всей длине трубопровода (1) на известных расстояниях. Устройства отбора и транспортировки анализируемой среды выполнены в виде патрубков (5), проходящих через в теплоизоляцию (2) трубопровода (1). Одни торцы патрубков (5) выведены в подизоляционное пространство (4) трубопровода (1), а другие торцы патрубков (5) выведены к датчикам радиоактивного излучения (6). Определение местоположения и массового расхода течи проводят по совокупным показаниям задействованных комплексов измерения активности азота-16. Технический результат - повышение точности определения местоположения и массового расхода течи. 1 ил.
Наверх