Газопылеударный масс-спектрометр

 

Изобретение относится к приборостроению, средствам автоматизации и системам управления, а именно к области космических исследований. Масс-спектрометр содержит мишень, источник ионов, выталкивающую сетку, приемник ионов газовой части, расположенный вокруг источника ионов, приемник ионов пылевой части, расположенный на оси прибора с обратной стороны мишени, электронное зеркало, выполненное из двух коаксиально расположенных внутренней сборки колец и внешней сборки колец, а также плоского электростатического отражателя, диафрагму, фокусирующую сборку и иммерсионную линзу. Внутренняя сборка колец и внешняя сборка колец расположены между выталкивающей сеткой и плоским электростатическим отражателем с рабочей стороны мишени. Фокусирующая сборка расположена перед приемником ионов пылевой части, а иммерсионная линза установлена перед фокусирующей сборкой; приемник ионов пылевой части масс-спектрометра расположен на оси прибора между источником ионов и фокусирующей сборкой. Технический результат - повышение разрешающей способности и коэффициента сбора. 1 ил.

Изобретение относится к приборостроению, средствам автоматизации и системам управления, а именно к области космических исследований.

Известен времяпролетный масс-спектрометр, содержащий мишень, ускоряющие сетки выталкивающего промежутка, электростатический линейный отражатель, приемник ионов (статья: Мамырин Б.А., Шмикк Д.В. Линейный масс-рефлектрон - ЖЭТФ, 1979, т.76, в.5, с.1500-1505). За счет использования линейно изменяющегося электрического поля в масс-рефлектроне достигается более высокое значение разрешающей способности по сравнению с классической схемой масс-спектрометра при тех же габаритах и потенциале ускоряющего промежутка.

Недостатками аналога являются низкая чувствительность и низкая разрешающая способность в области тяжелых масс ионов, обусловленные значительным разбросом пакета анализируемых ионов по энергиям.

Наиболее близким по технической сущности к заявляемому масс-спектрометру является выбранный в качестве прототипа времяпролетный масс-спектрометр, содержащий мишень, плоский электростатический отражатель, приемник ионов в виде вторично-электронного умножителя, электростатический цилиндрический отражатель, фокусирующие электроды полусферической формы, блок обработки ионного спектра, источник ионов, управляющую сетку, ускоряющую сетку, выходную сетку, нагреватель, отражатель, источник тока нагревателя, источник тока и напряжения отражения, источник напряжения управляющей сетки, источник изменяемого во времени импульсного напряжения, выталкивающую сетку и источник напряжения (МПК H 01 J 49/40, патент №2122257, опубликован 20.11.98, бюл. №32).

Недостатками прототипа являются: недостаточная точность формирования нелинейных полей в масс-рефлектроне из-за краевых эффектов и вследствие этого недостаточно высокая разрешающая способность прибора при жестких массогабаритных ограничениях, большая дисперсия ионов по энергиям, генерируемым источником.

Задача изобретения - создание устройства для анализа нейтрального газа, а также пылевых частиц с более высоким разрешением, высокой чувствительностью при минимизации массогабаритных характеристик.

Поставленная задача достигается тем, что в масс-спектрометр, содержащий мишень, источник ионов, плоский электростатический отражатель и выталкивающую сетку, введены приемник ионов газовой части, расположенный вокруг источника ионов, приемник ионов пылевой части, электронное зеркало, выполненное из двух коаксиально расположенных внутренней сборки колец, внешней сборки колец и плоского электростатического отражателя, диафрагма, фокусирующая сборка и иммерсионная линза; внутренняя сборка колец и внешняя сборка колец расположены коаксиально между выталкивающей сеткой и плоским электростатическим отражателем с рабочей стороны мишени, приемник ионов пылевой части, расположен на оси прибора с обратной стороны мишени между источником ионов и фокусирующей сборкой, фокусирующая сборка расположена между приемником ионов пылевой части и иммерсионной линзой, а диафрагма - между приемником ионов пылевой части и фокусирующей сборкой.

Сущность устройства поясняется чертежом, где представлена схема газопылеударного масс-спектрометра.

Газопылеударный масс-спектрометр содержит соосно расположенные источник ионов 1, приемник ионов газовой части 2, расположенный вокруг источника ионов 1, приемник ионов пылевой части 3, электронное зеркало, выполненное из внутренней сборки колец 4, внешней сборки колец 5 и плоского электростатического отражателя 6, диафрагму 7, фокусирующую сборку 8, выталкивающую сетку 9, мишень 10 и иммерсионную линзу 11. Внутренняя сборка колец 4 и внешняя сборка колец 5 расположены коаксиально между выталкивающей сеткой 9 и плоским электростатическим отражателем 6 с рабочей стороны мишени 10, причем выталкивающая сетка 9 расположена ближе к мишени 10, чем плоский электростатический отражатель 6. Приемник ионов пылевой части 3 расположен на оси прибора с обратной стороны мишени 10 между источником ионов 1 и фокусирующей сборкой 8. Фокусирующая сборка 8 расположена между приемником ионов пылевой части 3 и иммерсионной линзой 11, а диафрагма 7 - между приемником ионов пылевой части 3 и фокусирующей сборкой 8.

Масс-спектрометр работает в двух режимах.

Первый режим предназначен для определения элементного состава нейтрального газа.

Ионы, образованные в источнике ионов 1, приобретают ускорение под воздействием ускоряющего потенциала выталкивающей сетки 9, попадают в тормозящее поле, формируемое внутренней сборкой колец 4 и плоским электростатическим отражателем 6, возвращаются и регистрируются приемником ионов газовой части 2.

Второй режим - режим пылевых частиц, позволяет регистрировать элементный состав микрометеороидов и техногенных частиц, находящихся на околоземной орбите.

В результате высокоскоростного соударения пылевой частицы о мишень 10 образуется облако ионов, которое приобретает ускорение под воздействием потенциала выталкивающей сетки 9. Далее пакет ионов отражается в электронном зеркале, образуемом внешней 5, внутренней 4 сборками колец и плоским электростатическим отражателем 6, проходит через отверстия в мишени 10 и второй раз отражается в поле иммерсионной линзы 11. Фокусирующая сборка 8 проецирует пучок ионов от иммерсионной линзы 11 на видимую часть площади приемника ионов пылевой части 3, образуемую диафрагмой 7.

Используя выражения для потенциала поля вдоль оси z

,

где D - диаметр линзы;

U1, U2 - потенциалы электродов, и учитывая, что

,

где f - фокусное расстояние линзы (в данном случае это расстояние от линзы до приемника);

d - расстояние между электродами,

можно подобрать U1, U2 такие, чтобы ионные пучки фокусировались в приемник.

Геометрические размеры линзы и подаваемые на электроды потенциалы соответственно равны

d=0,016 м; U1=50 B; U2=38 B.

Разработанный масс-спектрометр обладает более высокой разрешающей способностью и коэффициентом сбора по сравнению с прямыми аналогами.

Формула изобретения

Газопылеударный масс-спектрометр, содержащий мишень, источник ионов, плоский электростатический отражатель и выталкивающую сетку, отличающийся тем, что в него введены приемник ионов газовой части, расположенный вокруг источника ионов, приемник ионов пылевой части, электронное зеркало, выполненное из двух коаксиально расположенных внутренней сборки колец, внешней сборки колец и плоского электростатического отражателя, диафрагма, фокусирующая сборка и иммерсионная линза, при этом внутренняя сборка колец и внешняя сборка колец расположены коаксиально между выталкивающей сеткой и плоским электростатическим отражателем с рабочей стороны мишени, приемник ионов пылевой части расположен на оси прибора с обратной стороны мишени между источником ионов и фокусирующей сборкой, фокусирующая сборка расположена между приемником ионов пылевой части и иммерсионной линзой, а диафрагма - между приемником ионов пылевой части и фокусирующей сборкой.

РИСУНКИ

Рисунок 1



 

Похожие патенты:

Изобретение относится к области спектрометрии и используется для обнаружения атомов и молекул в пробе газа

Изобретение относится к области газового анализа и может использоваться для определения микропримесей различных веществ в газах или применяться в газовой хроматографии в качестве чувствительного детектора

Изобретение относится к области газового анализа и предназначено для обнаружения микропримесей веществ в газовых средах, в частности атмосферном воздухе

Изобретение относится к газовому анализу, предназначено для определения концентрации микропримесей веществ в газовых средах, в частности в атмосферном воздухе

Изобретение относится к технической физике и может быть использовано для анализа состава материалов и веществ

Изобретение относится к приборостроению, средствам автоматизации и системам управления, а именно к области космических исследований

Изобретение относится к области научного приборостроения и более точно касается времяпролетного масс-анализатора

Изобретение относится к области аналитического приборостроения и может быть использовано для масс-спектрометрического анализа веществ

Изобретение относится к масс-спектрометрическому анализу веществ и может применяться в случаях, если анализируемое вещество может подаваться в масс-спектрометр в виде потока частиц (молекул)

Изобретение относится к жидкосцинтилляционной альфа-спектрометрии и, в частности, к способам определения активности альфа-излучающих радионуклидов, например, в пробах промежуточных и конечных продуктов технологий получения радиоизотопов и переработки отработавшего ядерного топлива, а также в пробах аэрозольных выбросов, водных сбросов и объектов окружающей среды

Изобретение относится к области радиоэкологического мониторинга, может быть использовано для измерения содержания радионуклидов в различных компонентах окружающей среды при обработке результатов измерений в комплексе аппаратно-программных средств, позволяющих оперировать с большими массивами радиоэкологической информации

Изобретение относится к измерительной технике, а именно к устройствам для изучения спектрального состава рентгеновского излучения

Изобретение относится к ядерной электронике и может быть использовано в рентгеновских спектрометрах

Изобретение относится к области экспериментальной ядерной физики и предназначено для стабилизации коэффициента усиления сцинтилляционного спектрометра гамма-излучения

Изобретение относится к области определения физических и химических свойств газов с использованием ионизации газов и может быть использовано для определения токсичных примесей в газе и их идентификации
Наверх