Комбинированная труба

 

Изобретение относится к строительной индустрии, а именно к магистральным и технологическим трубопроводам для сети отопления и горячего водоснабжения, а также газо- и нефтепроводам. Техническим результатом изобретения является обеспечение химической стойкости, прочности и долговечности труб. Комбинированная труба состоит из наружной цементосодержащей трубы и непроницаемой внутренней оболочки из коррозионностойкой стали, причем между трубой и оболочкой выполнен адгезионный слой на основе полимерного и/или кристаллогидратного, и/или силикатного, или металлофосфатного связующего с армирующим наполнителем. Соотношение толщины внутренней оболочки и толщины цементосодержащей трубы составляет от 1:10 до 1:2000. В качестве полимерного связующего используют полиэфирные, или эпоксидные, или акрилатные, или полиуретановые, или кремнийорганические, или формальдегидные смолы, а также термоплавкие или латексные клеи. В качестве кристаллогидратного связующего используют сульфат магния, или гипс, или цемент. На концах комбинированной трубы выполнены металлические кольцевидные законцовки, неразъемно соединенные с внутренней непроницаемой оболочкой и с цементосодержащей трубой, что обеспечивает надежный стык труб при формировании трубопровода. 7 з.п. ф-лы, 3 ил.

Изобретение относится к строительной индустрии, а именно к магистральным и технологическим трубопроводам для сети отопления и горячего водоснабжения, а также газо- и нефтепроводам.

Известна комбинированная труба (пат. РФ №2156910, МПК F 16 L 9/02, опубл. 2000 г.), содержащая внутреннюю чугунную трубу, защитную оболочку из пенополиминерального покрытия определенной толщины и законцовки на концах труб определенного размера.

К недостаткам, препятствующим использованию данного изобретения, следует отнести невысокую химическую стойкость внутренней чугунной трубы, ее хрупкость и большой вес.

Известен трубопровод для агрессивных сточных вод (пат. Германии №19743970, МПК F 16 L 9/08), который состоит из железобетонных труб с внутренней облицовкой из термопластичного материала, стойкого к агрессивным сточным водам. Трубы проложены с обеспечением герметичного стыка.

К недостаткам данного изобретения следует отнести сложность выполнения конструкции механического крепления внутренней облицовки к трубе, что затрудняет использование в масштабном производстве за счет большой трудоемкости и высокой цены.

Известен газопровод (патент РФ №2084747, МПК F 16 L 9/08, опубл. 1997 г.), состоящий из железобетонной или цементной трубы с внутренней газонепроницаемой оболочкой, выполненной из полимерного материала.

Недостатками, препятствующими использованию данного изобретения, являются недопустимая величина паропроницаемости полимерной оболочки, особенно при повышении температуры транспортируемой жидкости, склонность к растрескиванию цементных труб и, как следствие, их недолговечность.

Наиболее близким аналогом по технической сущности к заявляемому изобретению является изобретение по патенту РФ №2084747, которое и выбрано в качестве прототипа.

Техническая задача, которая решается предлагаемым изобретением - обеспечение химической стойкости, прочности и долговечности труб для магистральных и технологических трубопроводов.

На решение поставленной задачи направлено предлагаемое изобретение. Сущность его заключается в том, что внутренняя оболочка из коррозионностойкой стали обеспечивает высокие и стабильные защитные свойства, как в агрессивных средах, так и при повышенной температуре транспортируемой жидкости, а сочетание с цементосодержащей трубой обуславливает устойчивость к внешним воздействиям, при этом наличие адгезионного слоя не только надежно соединяет в единую конструкцию наружную трубу и внутреннюю оболочку, но и позволяет повысить долговечность комбинированной трубы за счет значительного повышения трещиностойкости цементосодержащей трубы в зоне контакта с адгезионным слоем.

Указанный технический результат достигается тем, что комбинированная труба, состоит собственно из наружной цементосодержащей трубы и непроницаемой внутренней оболочки, между трубой и оболочкой выполнен адгезионный слой на основе полимерного и/или кристаллогидратного и/или силикатного или металлофосфатного связующего с армирующим наполнителем, а непроницаемая внутренняя оболочка выполнена из коррозионностойкой стали, при этом соотношение толщины внутренней оболочки и толщины цементосодержащей трубы составляет от 1:10 до 1:2000.

В качестве полимерного связующего используют полиэфирные, или эпоксидные, или акрилатные, или полиуретановые, или кремнийорганические, или формальдегидные смолы, а также термоплавкие или латексные клеи.

В качестве кристаллогидратного связующего используют сульфат магния, или гипс, или цемент.

В качестве металлофосфатного связующего используют алюмохромофосфатные или алюможелезофосфатные связующие. В качестве силикатного связующего используют силикаты калия, или натрия, или лития.

Связующее дополнительно содержит мелкодисперсный наполнитель, например кварц, или доломитовую муку, или мел.

В качестве армирующего наполнителя используют иглопробивные нетканые материалы.

На концах комбинированной трубы выполнены металлические кольцевидные законцовки, неразъемно соединенные с внутренней непроницаемой оболочкой и с цементосодержащей трубой.

Признаки, приведенные в формуле изобретения, являются необходимыми и достаточными для достижения указанного технического результата, то есть являются существенными.

Предлагаемое изобретение не известно из доступных источников информации, явным образом не следует из уровня техники и при этом является промышленно применимым, то есть соответствует всем критериям патентоспособности по действующему законодательству.

Материалы, применяемые при изготовлении комбинированной трубы.

Для выполнения адгезионного слоя используют полимерные связующие на основе:

- полиэфирной, например, ВК-5 (Инструкция ВИАМ 596-69, ОСТ 90-123-74), ГИПК-131 (ТУ 6-05-251-15-72);

- эпоксидной, например, ВК-1 (Инструкция ВИАМ 958-69), К-153 (ТУ 6-05-1584-72), УП 5-182 (ТУ 6-05-241-65-73), УП5-177 (ТУ 6-05-241-31-74);

- полиуретановой, например, ПУ-2 (Инструкция ВИАМ 596-69, 701-58, 588-64), КИП-Д (ТУ 6-0104-72);

- акрилатной, например, "Циакрин ПП" (ТУ 6-09-14-1408-75), ВАК (ТУ 6-0304-73);

- формальдегидной, например, БФ-2 (ГОСТ 12172-7-74), ВС-10Т (ТУ 6-09-4089-75), БФ-4 (ГОСТ 12172-78);

- кремнеорганической, например, ВК-2, ВК-8, ВК-15 (ТУ 6-05-1456-71);

- а также термоплавкие клеи, например, расплав ТФ 60 (ТУ 6-05-211-895-79) или клей-расплав на основе сополиамида 548;

- латексные клеи, например, бустилат или мастика битумно-каучуковая (ТУ 38.302-16-385-91).

Для выполнения адгезионного слоя используют также:

- кристаллогидратные связующие в виде сульфата магния, гипса или цемента;

- металлофосфатные связующие, например, алюмохромофосфатное (АХФС ТУ 6-18-166-78) или алюможелезофосфатное (АЖФС).

В качестве армирующего наполнителя используют, например, лавсановое или пропиленовое иглопробивное полотно (ТУ 412-854-91, ТУ 17-529-814-80).

В качестве цементосодержащей трубы используют промышленно выпускаемые асбестоцементные или цементные или бетонные трубы, выполненные в соответствии с требованиями ГОСТ 539-80 или ГОСТ 1839-80.

Непроницаемую внутреннюю оболочку изготавливают из коррозионностойкой стали, например, 12Х18Н10Т.

Предлагаемое изобретение поясняется чертежами: на фиг.1 представлена комбинированная труба в разрезе; на фиг.2 представлен возможный вид кольцевой законцовки в разрезе; на фиг.3 - разрез комбинированной трубы с законцовкой, где

1 - внутренняя оболочка из коррозионностойкой стали;

2 - адгезионный слой из связующего с армирующим наполнителем;

3 - цементосодержащая труба;

4 - кольцевидная законцовка;

5 - сварной шов.

Комбинированная труба изготавливается, например, следующим образом:

ПРИМЕР №1.

Две плоские ленты из стали Х18Н10Т толщиной 1,0 мм свариваются по боковым краям непрерывными сварными швами, образуя внутреннюю оболочку (1) из коррозионностойкой стали в виде плоскосложенной трубы. На образованных поверхностях внутренней оболочки (1) формируют адгезионный слой (2), для чего укладывают иглопробивное нетканое лавсановое полотно, а затем наносят кристаллогидратное и силикатное связующее: смесь цемента и жидкого стекла (силикат калия). Затем придают плоскосложенной трубе U-образную форму и вводят внутрь асбестоцементной трубы (3), толщина стенок которой равна 10 мм (1:10). При необходимости установки законцовок (4) в торцы цементной трубы (3) вставляют кольцевые законцовки (4), выполненные из той же марки стали: толщина стенки от 1,0 до 10,0 мм, внутренний диаметр равен наружному диаметру оболочки из коррозионностойкой стали. Внутреннюю оболочку (1) из стали расправляют и ее торцевые края сваривают (5) с кольцевидными законцовками (4). В торцы комбинированной трубы вставляют заглушки. При необходимости трубу разогревают и плавно поднимают давление внутри до момента затвердевания связующего. Излишки клея выдавливают в тонкие зазоры между асбестоцементной трубой (3) и кольцевидными законцовками (4). Кольцевые законцовки (4) используются для последующей сборки труб сваркой или механическим креплением в единую плеть.

ПРИМЕР № 2.

Внутреннюю оболочку (1) из стали Х18Н10Т толщиной 0,05 мм сваривают, как указано в первом примере. Сначала на образованные поверхности равномерно распределяют эпоксидный клей марки К-153, а затем укладывают иглопробивное нетканое пропиленовое полотно, образуя при этом адгезионный слой (2). В том же порядке, как и в первом примере, внутренняя оболочка (1) с подготовленным адгезионным слоем (2) вводится в бетонную трубу (3) с толщиной стенки 100 мм (1:2000). В результате раздува и подогрева формируется комбинированная труба.

ПРИМЕР № 3.

Комбинированную трубу изготавливают так же, как в примере 1, но адгезионный слой (2) выполняют из бустилата, гипса и иглопробивного лавсанового полотна.

ПРИМЕР № 4.

Аналогичным образом изготовлены комбинированные трубы с толщиной внутренней оболочки (1), равной 0,5 мм и толщиной асбестоцементной трубы (3) - 10 мм (1:20). В качестве полимерного связующего использовался полиэфирный клей ВК-5 с добавлением кварца, а в качестве армирующего наполнителя при формировании адгезионного слоя (2) использовался синтетический нетканый материал на основе лавсановых волокон.

Пример № 5.

Комбинированная труба изготавливается указанным в примере 1 способом, но отличается тем, что адгезионный слой (2) выполняют из сульфата магния и иглопробивного нетканого полипропиленового полотна.

Пример № 6.

Комбинированная труба формируется аналогичным указанному в примере 1 способом, но из внутренней стальной оболочки (1) толщиной 1,00 мм и бетонной трубы (3) с толщиной стенки 100 мм (1:100). Адгезионный слой выполняется из силиката натрия и синтетического нетканого лавсанового полотна в качестве армирующего наполнителя.

Пример № 7.

Описанным в примере 1 способом изготавливается комбинированная труба, имеющая внутреннюю оболочку (1) из стали Х18Н10Т толщиной 0,5 мм, вставленную в цементную трубу (3) толщиной 20 мм (1:40). Между трубой и оболочкой выполнен адгезионный слой (2) из алюмохромофосфатного связующего марки АХФС и нетканого полипропиленового полотна.

Пример № 8.

Изготавливают аналогично примеру 7 комбинированную трубу, у которой адгезионный слой (2) выполнен из полимерного связующего на формальдегидной основе марки БФ-2 с добавлением цемента и из полипропиленового иглопробивного полотна в качестве армирующего наполнителя.

Пример № 9.

Способом, описанным в примере 1, изготавливается внутренняя оболочка (1) из коррозионностойкой стали толщиной 0,1 мм в виде плоскосложенной трубы. На ее поверхности укладывают иглопробивное нетканое лавсановое полотно и наносят полимерное связующее: термоплавкий клей-расплав на основе сополиамида 548, что и представляет собой адгезионный слой (2). Плоскосложенной трубе придается U-образная форма, а затем ее вводят внутрь бетонной трубы (3) толщиной 80 мм (соотношение толщин внутренней оболочки и бетонной трубы 1:800). В результате нагрева и повышения давления связующее затвердевает и формируется монолитная комбинированная труба.

Пример № 10.

Аналогично примеру 9 изготавливают комбинированную трубу с адгезионным слоем, содержащим смесь силикатного связующего (силиката лития) и полимерного связующего на кремнеорганической основе марки ВК-15 и полипропиленового нетканого полотна.

Пример № 11.

Аналогичным описанному в примере 9 способом изготавливают комбинированную трубу с адгезионным слоем, состоящим из термоплавкого клея-расплава марки ТФ 60, гипса и полипропиленового иглопробивного полотна в качестве армирующего наполнителя.

Пример № 12.

Комбинированную трубу изготавливают по способу, описанному в примере 9, но адгезионный слой выполнен из иглопробивного лавсанового полотна, на которое нанесено полимерное связующее на полиуратновой основе марки ПУ-2 с добавлением мела в качестве мелкодисперсного наполнителя.

Пример № 13.

Комбинированную трубу изготавливают по способу, описанному в примере 9, но адгезионный слой выполнен из нетканого полипропиленового полотна, на которое нанесено полимерное связующее на акрилатной основе марки "Циакрин ПП" с добавлением обезвоженной доломитовой муки в качестве мелкодисперсного наполнителя.

При использовании связующего на полимерной основе могут вноситься мелкодисперсные наполнители для повышения тиксотропности, такие как доломитовая мука (пример № 13), кварц (пример № 4), мел (пример № 12).

Изготовленные комбинированные трубы прошли испытания согласно ГОСТ 11310-90 Методы испытаний "Трубы и муфты асбоцементные" и отвечают следующим техническим характеристикам:

Рабочее давление не ниже 5 МПа (50 кг/см2)

Рабочая температура до 200С

Паропроницаемость 0

Теплопроводность 0,09 Вт/мС.

Длина труб от 4,1 м до 5,1 м. Вес комбинированных труб составлял от 40 кг до 680 кг.

Испытания полученных комбинированных труб на прочность, на разрыв, на раздавливание и на изгиб показали их высокую трещиностойкость.

При соотношении толщины внутренней оболочки (1) и толщины цементосодержащей трубы (3) менее чем 1:10 не наблюдается улучшения технических характеристик готового изделия, но увеличивается их стоимость за счет повышенного расхода материалов.

При соотношении толщин более чем 1:2000 наблюдается ухудшение прочностных свойств комбинированной трубы за счет повышенной склонности к растрескиванию.

Комбинированные трубы могут эксплуатироваться в интервале температур от -60С до +200С и имеют хорошие теплозащитные свойства, что обусловлено сочетанием определенных материалов, из которых изготовлен каждый из слоев комбинированной трубы, и определенным соотношением толщин.

Полированная поверхность внутренней непроницаемой оболочки из коррозионностойкой стали обеспечивает не только химическую стойкость изделия, но и повышает пропускную способность трубопроводов на 10-20%.

Сочетание химической стойкости и прочности комбинированной трубы в широком диапазоне температур обеспечивает долговечность труб, предназначенных для магистральных и технологических трубопроводов.

Сравнение полученных результатов испытаний предлагаемой комбинированной трубы и трубы по патенту РФ №2084747 (прототип) показало, что последняя имеет технические характеристики на порядок хуже, чем предлагаемая комбинированная труба.

Из вышеизложенного следует, что заявленная комбинированная труба направлена на решение поставленной задачи и при этом соответствует всем требованиям патентоспособности по действующему законодательству.

Формула изобретения

1. Комбинированная труба, состоящая собственно из наружной цементосодержащей трубы и непроницаемой внутренней оболочки, отличающаяся тем, что между трубой и оболочкой выполнен адгезионный слой на основе полимерного, и/или кристаллогидратного, и/или силикатного, или металлофосфатного связующего с армирующим наполнителем, а непроницаемая внутренняя оболочка выполнена из коррозионно-стойкой стали, при этом соотношение толщины внутренней оболочки и толщины цементосодержащей трубы составляет от 1:10 до 1:2000.

2. Комбинированная труба по п.1, отличающаяся тем, что в качестве полимерного связующего используют полиэфирные, или эпоксидные, или акрилатные, или полиуретановые, или кремнийорганические, или формальдегидные смолы, а также термоплавкие или латексные клеи.

3. Комбинированная труба по п.1, отличающаяся тем, что в качестве кристаллогидратного связующего используют сульфат магния, или гипс, или цемент.

4. Комбинированная труба по п.1, отличающаяся тем, что в качестве металлофосфатного связующего используют алюмохромофосфатные или алюможелезофосфатные связующие.

5. Комбинированная труба по п.1, отличающаяся тем, что в качестве силикатного связующего используют силикаты калия, или натрия, или лития.

6. Комбинированная труба по любому из пп.2-5, отличающаяся тем, что связующее дополнительно содержит мелкодисперсный наполнитель, например кварц, или доломитовую муку, или мел.

7. Комбинированная труба по п.1, отличающаяся тем, что в качестве армирующего наполнителя используют иглопробивные нетканые материалы.

8. Комбинированная труба по п.1, отличающаяся тем, что на ее концах выполнены металлические кольцевидные законцовки, неразъемно соединенные с внутренней непроницаемой оболочкой и с цементосодержащей трубой.

РИСУНКИ

Рисунок 1, Рисунок 2, Рисунок 3



 

Похожие патенты:

Изобретение относится к области строительства инженерных сетей, в частности канализационных труб и коллекторов

Изобретение относится к строительству и используется при сооружении трубопроводов для транспортировки жидких и газообразных агрессивных сред при высоких давлениях, при вакууме, при больших температурных колебаниях, применяемых в химической и нефтяной и газовой промышленностях

Изобретение относится к газопроводам, а именно к трубам, по которым газ подается потребителям

Изобретение относится к конструкции и устройству для изготовления цилиндрических дисперсно-армированных трубчатых изделий, применяемых в напорных и безнапорных трубопроводах для транспортирования различных жидкостей, не агрессивных по отношению к бетону, в качестве элементов крепи горных выработок, а также в качестве несущих колонн в промышленно-гражданских зданиях и т.п

Изобретение относится к строительству и машиностроению, в частности к опорным устройствам трубопроводов

Изобретение относится к механике, в частности к жестким трубам, и может быть использовано в производстве бетонных и железобетонных труб

Изобретение относится к производству асбоцементных и бетонных труб с усиливающей наружной оболочкой и может найти применение в строительстве, например, при устройстве коммуникационных сетей

Изобретение относится к подводным трубопроводам, а именно к трубам с балластным покрытием, используемым для морских трубопроводов

Изобретение относится к области строительства и к подводным трубопроводам, а именно к полым колоннам и сваям, к трубам с балластным покрытием, используемым для морских трубопроводов, а также к технологии их изготовления

Изобретение относится к стальным трубам, облицованным бетоном. Сущность изобретения: облицованная литьем под давлением стальная труба, которая введена в эксплуатацию для транспортировки жидкой среды, содержит кольцевую облицовку из бетона или цементного раствора, образующую внутренний диаметр трубы, металлическую оболочку, окружающую облицовку. Облицовка находится в прямом контакте с внутренней поверхностью стенки металлической оболочки, при этом облицовка находится в предварительно напряженном состоянии посредствам металлической оболочки в первоначальном состоянии до ввода трубы в эксплуатацию для транспортировки жидкой среды. Предварительное напряжение облицовки в конечном состоянии по существу исключено, когда она введена в эксплуатацию для транспортировки жидкой среды. Техническим результатом изобретения является обеспечение жесткости трубы и коррозионной стойкости. 6 н. и 27 з.п. ф-лы, 4 ил., 1 пр.

Группа изобретений относится к трубопроводной технике, а именно к трубам с бетонным покрытием. Предложенная труба состоит из проводящей трубы 1 с многослойным бетонным покрытием. Первый слой 4 бетонного покрытия плотностью от 2900 кг/см3 до 3400 кг/м3 размещен в кольцевом пространстве между трубой 1 и первой несъемной опалубкой 6. Второй слой 8 бетонного покрытия плотностью от 1900 кг/см3 до 2600 кг/м3 и большей прочностью на сжатие размещен в кольцевом пространстве между первой несъемной опалубкой 6 и второй несъемной опалубкой 10. При изготовлении трубы бетонную смесь нагнетают в пространство между трубой 1 и установленной на ней первой опалубкой 6. После выдержки первого слоя 4 устанавливают вторую опалубку 10 и в пространство между опалубками нагнетают вторую бетонную смесь. В другом способе изготовления трубы сначала производят установку первой опалубки 6 и второй опалубки 10. Подготовку бетонной смеси первого слоя и второго слоя бетона производят одновременно и раздельно. Полученные бетонные смеси нагнетаются в соответствующие кольцевые пространства бетонными насосами. Технический результат: повышение защищенности трубы от внешних механических и ударных воздействий. 3 н. и 12 з.п. ф-лы, 3 ил.

Группа изобретений относится к трубопроводной технике, а именно к трубам с бетонным покрытием. Предложенная труба состоит из проводящей трубы 1 с многослойным бетонным покрытием. Первый слой 4 бетонного покрытия плотностью от 2900 кг/см3 до 3400 кг/м3 размещен в кольцевом пространстве между трубой 1 и первой несъемной опалубкой 6. Второй слой 8 бетонного покрытия плотностью от 1900 кг/см3 до 2600 кг/м3 и большей прочностью на сжатие размещен в кольцевом пространстве между первой несъемной опалубкой 6 и второй несъемной опалубкой 10. При изготовлении трубы бетонную смесь нагнетают в пространство между трубой 1 и установленной на ней первой опалубкой 6. После выдержки первого слоя 4 устанавливают вторую опалубку 10 и в пространство между опалубками нагнетают вторую бетонную смесь. В другом способе изготовления трубы сначала производят установку первой опалубки 6 и второй опалубки 10. Подготовку бетонной смеси первого слоя и второго слоя бетона производят одновременно и раздельно. Полученные бетонные смеси нагнетаются в соответствующие кольцевые пространства бетонными насосами. Технический результат: повышение защищенности трубы от внешних механических и ударных воздействий. 3 н. и 12 з.п. ф-лы, 3 ил.

Изобретение относится к производству труб с балластным покрытием, используемых при прокладке трубопроводов на морских шельфах, водных переходах, в обводненной или заболоченной местности, а также при подземной или надземной прокладке трубопроводов в сезонно-мерзлых и слабонесущих грунтах. Стальную трубу с антикоррозионным покрытием устанавливают на сборочном стенде. Вдоль ее поверхности устанавливают арматурный каркас, состоящий из продольных и кольцевых стержней арматуры. На каркасе размещают кабель-канал в виде защитной трубки. Трубу помещают в форму и внутрь пространства между трубой и формой закачивают бетонную смесь. После набора прочности бетоном трубу извлекают из формы. Технический результат - высокая надежность, связанная с размещением кабель-канала в толще бетонного покрытия трубопровода и технологией его закрепления. 8 з.п. ф-лы, 1 ил.

Изобретение относится к строительству трубопроводов и может быть использовано при прокладке трубопроводов по дну водоемов, по заболоченной местности, а также на речных и морских переходах небольшой протяженности. Конструкция перехода трубопровода через препятствия содержит внутреннюю трубу, проводящую вещество в газообразном или жидком состоянии. На внутреннюю трубу соосно с образованием кольцевого пространства нанесено балластное покрытие, имеющее длину, меньшую, чем внутренняя труба. Над продольным сварным швом внутренней трубы установлена центральная трубка, вмонтированная в балластное покрытие и выступающая за край балластного покрытия. Центральная трубка изготовлена из диэлектрических материалов и предназначена для инсталляции кабелей. Слева и справа от центральной трубки расположено минимум по одной такой же трубке на равном расстоянии. Для труб с диаметром менее 500 мм расстояние между трубками составляет не менее 75 мм, а для труб с диаметром 500 мм и более расстояние между трубками составляет не менее 100 мм. Изобретение обеспечивает сокращение затрат и времени на монтаж конструкции трубопровода, а также возможность последующей переинсталляции волоконно-оптических кабелей связи. 1 з.п. ф-лы, 1 ил.
Наверх