Способ компенсации влияния уровня температуры жидкости на входе измерительного канала теплового расходомера с датчиками теплового потока от наружной поверхности измерительного канала на результат измерения расхода жидкости

 

Встречно ЭДС датчиков теплового потока (ДТП) включают ЭДС датчика разности температуры t1 жидкости на входе измерительного канала и температуры tн в точках теплового контакта окружающей канал среды или радиаторов с наружной поверхностью датчиков теплового потока. Расход определяют по сигналам ДТП, термопарных датчика разности температур (t1-tн) и датчика разности t температур t1 и t2, где t2 - температура жидкости на выходе измерительного канала. Изобретение позволяет расширить диапазон измерений тепловых расходомеров в сторону значений, близких к нулевым. 1 ил.

Предлагаемое изобретение относится к области метрологии, связанный с измерениями расхода жидкостей и газов. Одним из методов является небольшое охлаждение (или нагрев) жидкости в измерительном канале расходомера (см. Кремлевский П.П. Расходомеры и счетчики количества, - Л.: Машиностроение, 1989, с. 375-380). Предполагаемый баланс теплообменника при этом (вынужденная конвекция)

Qк=G ср(t1-t2)=G cp t,

где Qк – количество теплоты, отданной (или полученной) в измерительном канале;

G – массовый расход жидкости;

Ср – удельная теплоемкость жидкости;

t1 – температура жидкости на входе канала;

t2 – температура жидкости на выходе канала;

(см. Исаченко, Осипова, Сукомед. Теплопередача - М.: Энергия, с. 161, 164). Но в этой закономерности обычно принимается во внимание лишь t, не учитывая влияния температуры t1, которое в некоторых случаях бывает определяющим. Одним из способов компенсации такого влияния является разделение измерительного канала на два ответвления (см. патент RU №2152599), не всегда, однако, дающее требуемый результат.

Задача решается предлагаемым способом компенсации влияния уровня температуры жидкости на выходе в измерительный канал теплового расходомера с датчиками теплового потока Qизм от наружной поверхности измерительного канала на результат измерения расхода жидкости по величинам Qизм и t=t1-t2, где t1 и t2 – температура жидкости, соответственно, на входе и выходе измерительного канала, где встречно ЭДС датчиков теплового потока включает ЭДС датчика разности температуры t1 и температуры tн в точках теплового контакта окружающей канал среды или радиаторов с наружной поверхностью датчиков теплового потока.

По этому способу учитывается дополнительный теплообмен с окружающей средой за счет теплопередачи по стенкам канала и по сечению самой жидкости, поскольку при малых расходах (меньше 5% от МАХ) это будет основной процесс. В случае же прекращения расхода тепловой поток Qтп от входа канала в окружающую его среду будет осуществляться как в обычном стержне (хотя и сложного сечения), когда можно приближенно использовать известную формулу

(см. Исаченко, Осипова, Сукомед. - М.: Энергия, 1969, с. 48). Практически величину можно считать постоянной и заменить ее коэффициентом k. Отсюда получается, что Qтп зависит, в основном, от избыточной температуры ( =t1–tн, где tн – температура окружающей среды (или радиаторов) в точках теплового контакта с наружной поверхностью датчиков теплового потока. Следовательно, получаем Qтп=k . Значит, при расходе G>0 тепловой поток от наружной поверхности канала, измеряемый датчиками, является суммой конвективного теплообмена и простой теплопроводности, т.е. изм=Qк+Qтп. Отсюда следует: Qк=Qизм–Qтп. Представив полученные значения в формулу теплового баланса, можно вычислить расход жидкости

Причем обе величины, Qизм и Qтп, зависят, в основном, от одной и той же разности температур (t1–tн), и поэтому при вычитании температурная зависимость от t1 и tн сводится к некоторому минимуму, определяемому экспериментально.

С применением термопарных датчиков температуры формула расхода примет вид

,

где k1E1=Qизм; k2E2=Qтп; k3E3рt, а k1, k2, k3 – коэффициенты преобразования. При этом коэффициенты k1 и k2 подбираются таким, чтобы при G=0 числитель тоже стал равен нулю.

Способ поясняется на чертеже, где в измерительном канале 1 создается разность температур t за счет теплообмена с внешней средой (или радиаторами), измеряемого датчиками теплового потока 2.

Предлагаемый способ позволяет расширить диапазоны измерений тепловых расходомеров от 100% расхода до значения, близкого к нулю, что зависит только от разрешающей способности вторичной аппаратуры.

Способ компенсации влияния уровня температуры жидкости на входе в измерительный канал теплового расходомера с датчиками теплового потока Qизм от наружной поверхности измерительного канала на результат измерения расхода жидкости по величинам Qизм и t=t1-t2, где t1 и t2 - температура жидкости соответственно на входе и выходе измерительного канала, отличающийся тем, что встречно ЭДС датчиков теплового потока включают ЭДС датчика разности температуры t1 и температуры tн в точках теплового контакта окружающей канал среды или радиаторов с наружной поверхностью датчиков теплового потока.

Рисунок 1



 

Похожие патенты:

Изобретение относится к экспериментальной теплофизике и может быть использовано для определения мгновенного осредненного по поверхности значения коэффициента теплоотдачи к поверхности рабочей камеры машины объемного действия

Изобретение относится к теплотехнике и может быть использовано для измерения зависимости градиента температур на поверхности от температуры поверхности

Изобретение относится к теплотехническим измерениям, позволяет определить количество тепловой энергии, расходуемой отопительным прибором, и может быть использовано для измерения количества расходуемой тепловой энергии в системах теплоснабжения

Изобретение относится к устройствам для измерения тепловых потоков, в том числе нестационарных, в частности для измерения теплового потока от движущейся среды к поверхности твердого тела

Изобретение относится к теплотехнике и может быть использовано для измерения зависимости градиента температур на поверхности от температуры поверхности

Изобретение относится к средствам получения информации о технологических процессах, играющих решающую роль во многих сферах народного хозяйства, в энергетике , криогенной технике и т.п;, а именно к способам определения теплового лотка и криогенной жидкости

Изобретение относится к области тепловых измерений и может быть использовано при измерении коэффициентов теплоотдачи в каналах теплообменных аппаратов, в охлаждающих каналах элементов тепловых двигателей

Изобретение относится к счетчикам энергии и способам измерения потребляемой энергии

Изобретение относится к измерительной техники и может быть использовано для измерения температуры и давления во впускном газопроводе двигателя внутреннего сгорания

Изобретение относится к измерительной технике, а точнее к устройствам для количественного измерения тепла, и применяется для измерения и исследования тепловых потоков путем использования дифференциального режима

Изобретение относится к технике тепловых измерений и может быть использовано в теплометрических системах и системах управления и мониторинга тепловых процессов в окружающей среде

Изобретение относится к области измерений, в частности к области измерений параметров потоков жидких и сыпучих веществ /расход тепла и массы/

Изобретение относится к теплофизическим измерениям и может быть использовано для прецизионных измерений теплоты сгорания газообразных видов топлива

Изобретение относится к теплофизическим измерениям, в частности к средствам измерения локальных тепловых потоков неоднородных по плотности через наружную поверхность трубы, например, для исследования теплоотдачи при существенном изменении условий внешнего обтекания трубы

Изобретение относится к приборостроению и может быть использовано для измерения расхода тепла в тепловых сетях, содержащих центробежные электронасосы

Изобретение относится к тепловым измерениям , а именно к устройствам для измерения количества теплоты, перекосимого жидким или газообразным теплоносителем

Изобретение относится к измерению и учету расхода тепла, поступающего к потребителю в потоке теплоносителя, включая турбулентный

 

Наверх