Способ синтеза нитроксиметилфениловых эфиров аспирина и его производных

 

Изобретение описывает способ синтеза нитроксиметилфениловых эфиров аспирина и его производных. Описывается способ получения (нитроксиметил)фениловых эфиров аспирина и его производных формулы R-COOH с типами радикалов, имеющих следующую формулу:

где R1 означает группу OCOR3; где R3 означает метил, этил или алкил С35, линейный или разветвленный; R2 означает водород; nI означает 0; причем вышеупомянутый способ синтеза включает следующие стадии: (1) реакцию между галогенидом R-С(O)-Х1А), где X1 означает Cl, Br, и R означает радикал как определено выше, с изомером гидроксибензальдегида, в присутствии основания, с образованием (карбонил)фенилового эфира (I); (2) восстановление альдегидной группы (карбонил)фенилового эфира с образованием (гидроксиметил)фенилового эфира; (3) реакцию между (гидроксиметил)фениловым эфиром формулы (II) с: a) SOX2, причем Х означает галоген, выбранный между Cl и Br, или b) с тозилхлоридом или мезилхлоридом; (4) реакцию между сложным эфиром, полученным на предыдущей стадии, с неорганической нитратной солью, катион металла которой принадлежит группе IB или IIB, с образованием (нитроксиметил)фенилового эфира. Также описываются (гидроксиметил)фениловый эфир производных аспирина формулы R-COOH, 2-(нитроксиметил)фениловый эфир 2-(ацтилокси)бензойной кислоты и 4-(нитроксиметил)фениловый эфир 2-(ацетилокси)бензойной кислоты. Технический результат – упрошение процесса получения конечных продуктов и получение их с хорошими выходами. 4 н. и 3 з.п. ф-лы.

Изобретение относится к улучшенному синтезу для получения (нитроксиметил)фениловых эфиров аспирина и его производных.

Эти сложные эфиры обладают интересными фармакологическими и терапевтическими свойствами; в частности они показывают улучшенную общую и местную толерантность на уровне слизистой оболочки желудка (WO 95/030641) и они являются более эффективными как антитромботические лекарственные средства (WO 97/16405).

Из предшествующего уровня техники известно, что (нитроксиметил)фениловые эфиры аспирина и его производных получают реакцией (нитроксиметил)фенола с аспирином и его производным в кислой форме (WO 97/16405).

В частности, получение (нитроксиметил)фенола проводят, начиная с (гидроксиметил)фенола через следующие стадии:

- реакция фенола с НВr в органическом растворителе для получения (бромметил)фенола;

- реакция (бромметил)фенола в органическом растворителе с AgNO3 для получения (нитроксиметил)фенола.

Синтез (нитроксиметил)фенольного промежуточного соединения имеет следующие недостатки. (Бромметил)фенол является химически нестабильным и раздражающим соединением. Нитроксипроизводное, полученное из бромметилфенола, все еще является нестабильным соединением, которое должно быть очищено перед реакцией с кислым хлоридом. (Нитроксиметил)фенол может далее разлагаться неконтролируемым путем, поэтому чтобы получить в промышленном масштабе это соединение с требуемой чистотой для конечной стадии эстерификации процессы очистки, обычно используемые в лабораторных органических синтезах, не могут быть использованы.

Следовательно, использование (нитроксиметил)фенола для синтеза (нитроксиметил)фениловых эфиров аспирина и его производных промышленно неосуществимо.

Неожиданно и с удивлением заявитель обнаружил, что синтезировать (нитроксиметил)фениловые эфиры аспирина и его производных, в частности (нитроксиметил)фениловые эфиры N-ацетилсалициловой кислоты, можно посредством синтетических реакций, в которых можно избежать использования вышеупомянутых производных фенола и таким образом стадий очистки промежуточных соединений, получая конечные продукты с хорошими выходами. Следовательно, этот новый процесс более благоприятный по сравнению с процессами предшествующего уровня техники.

Следовательно, объектом настоящего изобретения является новый способ получения (нитроксиметил)фениловых эфиров аспирина и его производных с формулой R-СООН с типами радикалов, имеющих следующую формулу:

где:

R1 означает группу ОСОR3; где R3 означает метил, этил или алкил С3-C5, линейный или разветвленный,

R2 означает водород;

nI означает 0;

предпочтительно в 1a) R1 означает ацетокси, предпочтительно в орто-положении по отношению к –СО-группе, R2 означает водород;

предпочтительно в 1b) R3=СН3, nI=0;

предпочтительно R-COOH означает ацетилсалициловую кислоту;

причем вышеупомянутый способ содержит следующие стадии, в основном проводимые в присутствии растворителя, инертного к реакционным условиям;

(1) реакцию между галогенангидридом R-C(O)-X1, где:

X1 означает галоген, выбранный между Сl и Вr,

R означает радикал как определено выше,

в присутствии основания с изомером гидроксибензальдегида, т.е. где гидроксильная группа может быть в орто, мета или пара положении, с образованием (карбонил)фенилового эфира (I):

(2) селективное восстановление альдегидной группы соединения (I) с образованием (гидроксиметил)фенилового эфира (II):

(3) реакцию между (гидроксиметил)фениловым эфиром формулы (II) с:

a) SOX2, причем Х означает галоген, выбранный между Сl и Вr, с образованием (галогенометил)фенилового эфира формулы (III), где Х = галоген,

или

b) с тозилхлоридом или мезилхлоридом с образованием (тозилоксиметил)или (мезилокси)фенилэфир, причем Х означает O-тозил или O-мезил в формуле (III):

(4) реакцию между соединением формулы (III) с неорганической нитратной солью, катион металла которой принадлежит группе IB или IIВ, с образованием соответствующего (нитроксиметил)фенилового эфира

Образование (карбонил)фенилового эфира на стадии (1) может альтернативно достигаться другими реакциями. Например, реакцией аспирина и его производного общей формулы R-COOH с дегидратирующим агентом, таким как, например, N,N’-дициклогексилкарбодиимидом, в присутствии аминопиридинового производного, N,N-дизамещенного алкильными радикалами C1-C4 (стадия (I1)), или с C1-C4 алкилхлорформиатом в присутствии основания, растворимого или нерастворимого в реакционной среде, как определено ниже (стадия (III)), или с N,N’-карбонилдиимидазол (стадия (IIII)).

Процесс, являющийся объектом настоящего изобретения, позволяет получать продукты с требуемой степенью чистоты. Таким образом, нет необходимости очищать соединения, полученные после каждой стадии. Общие выходы являются хорошими (50-70%).

На стадии (1) ацилхлориду или бромиду аспирина и его производного, полученному из соответствующего соединения в кислой форме посредством использования известных реагентов (например, тионилхлорида, тионилбромида, оксалилхлорида, оксалилбромида, РСl3, РВr3) позволяют реагировать в инертных растворителях (например, галогенированных углеводородах, таких как дихлорметан, трихлорметан; простых эфирах, таких как этилацетат, пропиловый эфир, изопропиловый эфир, диоксан; сложных эфирах, таких как этилацетат, пропилацетат, бутилацетат) в присутствии органического или неорганического основания с изомером гидроксибензальдегида как определено выше. Вышеупомянутое основание может быть растворимо в растворителе реакции, как в случае третичных алифатических аминов формулы N(RN)3, где RN означает алкильную группу C1-C4 такую как, например, трибутиламин, триэтиламин, диэтилметиламин, триметиламин; или вышеуказанное основание может являться или нерастворимым в растворителе, таким как, например, в случае щелочных неорганических солей, например карбоната калия, карбоната натрия, или основаниями щелочных металлов, такими как NaOH и КОН.

Когда стадию 1) заменяют стадией (1I), как определено выше, аминопиридиновое производное, N,N-дизамещенное алкильными радикалами C1-C4, использованное в сочетании с дегидратирующим агентом, предпочтительно выбирают, например, из диметиламинопиридина и дибутиламинопиридина; когда вместо стадии 1) используют стадию (1II), соединение C1-C4 алкилхлорформиат предпочтительно выбирают между этилхлорформиатом и изобутилхлорформиатом.

Реакцию (2) селективного восстановления альдегидной группы до спирта можно проводить путем гидрирования газообразньм водородом, используя обычные катализаторы на носителе из угля, такие как, например, палладий, в растворе соединения формулы (I) в инертном растворителе. Температура реакции находится в диапазоне 0-40С, давление газа может находиться в пределах от 1 до 3 атм.

Альтернативно гидрированию газообразным водородом восстановление соединения (II) можно проводить также с помощью других восстанавливающих агентов, например неорганических смешанных гидридов, таких как, например, NaBH4, в условиях, хорошо известных специалисту в данной области техники.

Стадию (3) проводят в инертном органическом растворителе при температуре в диапазоне 0-40С.

Альтернативную реакцию между спиртом и тозилхлоридом или мезилхлоридом проводят согласно способам, известным из предшествующего уровня техники.

Стадию (4) проводят добавлением неорганической нитратной соли, катион которой выбран из металлов, принадлежащих группам IB и IIВ, к раствору соединения формулы (III), где Х означает галоген, как определено выше, или O-тозил или O-мезил, в органическом растворителе, в котором вышеупомянутой нитратной соли следует быть растворимой, таком как, например, ацетонитрил, тетрагидрофуран. Катион соли может быть цинком, серебром или ртутью. Предпочтительно соль является нитратом серебра. Температура реакции может находиться в диапазоне между 20 и 90С.

Очевидно, что синтез является специфическим:

когда в процессе согласно настоящему изобретению используются в качестве исходных соединений другие терапевтически активные молекулы, имеющие реакционную карбоксильную функцию, обнаружено, что соответствующие нитроксиметилфениловые эфиры получаются с более низкими выходами, как это показано в примерах.

Следующие примеры представлены только в целях иллюстрации настоящего изобретения и они не ограничивают его.

Пример 1

Получение 3-(нитроксиметил)фенилового эфира 2-(ацетилокси)бензойной кислоты.

Пример 1а

Получение 3-(формил)фенилового эфира 2-(ацетилокси)бензойной кислоты.

Смесь 3-гидроксибензальдегида (830 г) и триэтиламина (8,24 г) в метиленхлориде (12,6 л) выдерживают при перемешивании в инертной атмосфере азота, охлаждая до температуры между -5С и 0С. Салицилоилхлорид (1650 г) добавляют маленькими порциями в течение часа. Смесь выдерживают при перемешивании еще в течение 15 мин, затем добавляют воду (10 л) и разделяют фазы. Водную фазу отбирают и отдельно экстрагируют метиленхлоридом (3 л). Органические фазы объединяют вместе, промывают 5% раствором Nа2СО3 (5 л 2 раза) и затем водой (5 л 2 раза). Органическую фазу высушивают сульфатом магния (2 кг) в присутствии обесцвечивающего угля (300 г). Фильтруют под вакуумом и растворитель выпаривают при пониженном давлении при температуре бани ниже, чем 40С, получая в конечном счете 1929 г 3-(формил)фенилового эфира 2-(ацетокси)бензойной кислоты (количественный выход) с темп. плав. 80-84С. Чистота соединения, определяемая ВЭЖХ, при использовании колонки LiChrospher® 100 RP 8 и элюента в виде фосфатного буфера рН 8/ацетонитрила 55/45, составляет 98,5%.

Пример 1b

Получение 3-(гидроксиметил)фенилового эфира 2-(ацетилокси)бензойной кислоты.

3-(Формил)фениловый эфир 2-(ацетилокси)бензойной кислоты (1929 г) растворяют в этилацетате (11 л) в присутствии 5% палладия на угле (290 г) с 50% влажностью.

Смесь гидрируют при комнатной температуре и давлении водорода примерно 2,5 атм при перемешивании. Реакция в течение первого часа является слегка экзотермичной и температура в реакторе повышается до 35С. Через восемь часов добавляют свежий катализатор (100 г) для завершения реакции. Через 12 часов реактор разгружают, катализатор удаляют фильтрацией под вакуумом в атмосфере азота, промывая перегородку этилацетатом (2 л). Органические фазы объединяют вместе и промывают 5% раствором бикарбоната натрия (3 л 2) и водой (3 л 2). Органическую фазу высушивают сульфатом магния (2 кг) в присутствии обесцвечивающего угля (100 г). Затем ее фильтруют под вакуумом и выпаривают при пониженном давлении при температуре бани ниже, чем 40С, получая 1850 г 3-(гидроксиметил)фенилового эфира 2-(ацетилокси)бензойной кислоты с выходом 95,2%, темп. пл. 77-79С. Чистота соединения, определенная ВЭЖХ при использовании колонки LiChrospher® 100 RP 8 и элюента в виде фосфатного буфера рН 8/ацетонитрила 55/45, составляет 99,0%.

Пример 1с

Получение 3-(хлорметил)фенилового эфира 2-(ацетилокси)бензойной кислоты. К смеси, состоящей из 3-(гидроксиметил)фенилового эфира 2-(ацетилокси)бензойной кислоты (1850 г) и тионилхлорида (5,5 л), поддерживаемой при перемешивании, добавляют диметилформамид (5 мл) при комнатной температуре и оставляют при перемешивании в течение одного часа. По окончанию тионил-хлорид выпаривают при пониженном давлении при температуре бани ниже, чем 40С. Остаточные следы тионилхлорида в соединении устраняют обработкой твердого вещества толуолом (2 л 2), который затем удаляют выпариванием при пониженном давлении при температуре бани ниже, чем 40С. Полученное таким образом неочищенное твердое вещество очищают кристаллизацией с изопропиловым эфиром (30 л), удаляя фильтрацией осадок, который остается нерастворимым в кристаллизационном растворе, доведенном до температуры кипения.

После охлаждения и фильтрации при пониженном давлении выделяют твердое вещество, которое высушивают под вакуумом при комнатной температуре, получая 1367 г (выход 69,4%) 3-(хлорметил)фенилового эфира 2-(ацетилокси)бензойной кислоты, темп. пл. 71-73С. Чистота соединения, определенная ВЭЖХ при использовании колонки LiChrospher® 100 RP 8 и элюента в виде фосфатного буфера рН 8/ацетонитрила 40/60, составляет 99,0%.

Пример 1d

Получение 3-(нитроксиметил)фенилового эфира 2-(ацетилокси)бензойной кислоты Раствор 3-(хлорметил)фенилового эфира 2-(ацетилокси)бензойной кислоты (1367 г) в ацетонитриле (8 л) обрабатывают при перемешивании AgNO3 (915 г) при комнатной температуре, защищая от света. Раствор нагревают с обратным холодильником в течение двух часов и затем охлаждают при комнатной температуре и добавляют AgNO3 (115 г). Раствор вновь нагревают с обратным холодильником и через 4 часа охлаждают до 10С; осадок (соли серебра) отфильтровывают под вакуумом и промывают ацетонитрилом (1 л 2). Органические фазы объединяют вместе, и растворитель выпаривают под вакуумом при температуре бани ниже чем 40С. Остаток растворяют в хлороформе (4 л), добавляют обесцвечивающий уголь (100 г), перемешивают и органическую фазу фильтруют через стеклянную перегородку (2,5 кг). Стеклянную перегородку промывают хлороформом (10 л).

Органические фазы объединяют вместе и концентрируют до маленького объема при пониженном давлении и температуре ниже, чем 40С до тех пор, пока в растворе будет замечено образование осадка (примерно 3 л по объему). Объем раствора поддерживают непрерывным добавлением изопропилового эфира (6 л), продолжая выпаривание хлороформа при пониженном давлении до полного его удаления из органической фазы. Органическую фазу оставляют при перемешивании в течение двух часов при температуре примерно 20С. Затем ее фильтруют под вакуумом, промывая изопропиловым эфиром (1,5 л) твердое вещество на фильтре. После высушивания под вакуумом при комнатной температуре получают 1200 г 3-(нитроксиметил)фенилового эфира 2-(ацетилокси)бензойной кислоты (выход 80,7%), темп. плавл. 63,5-64С. Чистота соединения, определенная ВЭЖХ при использовании колонки LiChrospher® 100 RP 8 и элюента в виде фосфатного буфера рН 8/ ацетонитрила 50/50, составляет 99,75%. Структура конечного продукта подтверждена 1Н-ЯМР (CDCl3): 8,22 (1Н, dd), 7,66 (1H, td), 7,47 (1H, t), 7,40 (1H, td), 7,32 (1H, d), 7,24-7,21 (2H, m), 7,18 (1H, dd), 5,44 (2H, s), 2,30 (3H, s). Общий выход процесса составляет 53,3%.

Пример 2

Получение 2-(нитроксиметил)фенилового эфира 2-(ацетилокси)бензойной кислоты Продукт получают согласно процедуре, описанной в Примере 1, используя в качестве спирта 2-гидроксибензальдегид. При анализе конечного соединения, полученного хроматографией на тонком слое силикогеля, используя как элюент гексан/этилацетат 7/3, получают единичное пятно. Структуру конечного продукта подтверждают 1Н-ЯМР (CDCl3): 8,22 (1H, dd), 7,68 (1H, dt), 7,35 (6Н, m), 5,40 (2H, s), 2,30 (3H, s). Общий выход процесса составляет 67,8%.

Пример 3

Получение 4-(нитроксиметил)фенилового эфира 2-(ацетилокси)бензойной кислоты. Продукт получают согласно процедуре, описанной в Примере 1. Используемый ароматический гидроксиальдегид представляет собой 4-гидроксибензальдегид. На тонком слое силикагеля, используя как элюент гексан/этилацетат 7/3, получают единичное пятно. Структуру конечного продукта подтверждают 1Н-ЯМР (СDСl3): 8,21 (1Н, dd), 7,66 (1Н, dt), 7,42 (6Н, m), 5,40 (2Н, s), 2,25 (3Н, s). Общий выход процесса составляет 57,5%.

Формула изобретения

1. Способ получения (нитроксиметил)фениловых эфиров аспирина и его производных формулы R-COOH с типами радикалов, имеющих следующую формулу:

где R1 означает группу ОСОR3, где R3 означает метил, этил или алкил С35, линейный или разветвленный;

R2 означает водород;

n1 = 0,

причем вышеупомянутый способ синтеза включает следующие стадии: (1) реакцию между галогенидом R-С(O)-Х1А), где X1 означает Сl, Вr и R означает радикал, как определено выше, с изомером гидроксибензальдегида в присутствии основания с образованием (карбонил)фенилового эфира (I); (2) восстановление альдегидной группы (карбонил)фенилового эфира с образованием (гидроксиметил)фенилового эфира; (3) реакцию между (гидроксиметил)фениловым эфиром формулы (II) с a) SOX2, причем Х означает галоген, выбранный между Сl и Вr, или b) с тозилхлоридом или мезилхлоридом; (4) реакцию между сложным эфиром, полученным на предыдущей стадии, с неорганической нитратной солью, катион металла которой принадлежит группе IВ или IIВ, с образованием (нитроксиметил)фенилового эфира.

2. Способ по п.1, где нитрат, использованный на стадии (4), является нитратом серебра.

3. Способ по пп.1 и 2, где соединение формулы R-COOH является ацетилсалициловой кислотой.

4. (Гидроксиметил)фениловый эфир производных аспирина формулы R-COOH, где R такой, как определено в п.1.

5. Способ по п.1 получения 3-(нитроксиметил)фенилового эфира 2-(ацетилокси)бензойной кислоты.

6. 2-(Нитроксиметил)фениловый эфир 2-(ацетилокси)бензойной кислоты.

7. 4-(Нитроксиметил)фениловый эфир 2-(ацетилокси)бензойной кислоты.



 

Похожие патенты:

Изобретение относится к органической химии, конкретно к новым соединениям, которые можно использовать при мочевых расстройствах

Изобретение относится к области производства эфиров азотной кислоты, используемых при получении баллиститных порохов, промышленных взрывчатых веществ и жидких унитарных топлив

Изобретение относится к новым нитратам спиртов общей формулы (I), где R', R", n, m представлены в формуле изобретения, способу их получения путем реакции нитрования 3-(ациламинодинитроалкил)-тетрагидро-1,3-оксазолов и -оксазинов

Изобретение относится к нитроксисоединениям общей формулы А-Х1-NО2 или их солям, где А и Х1 имеют значения, указанные в формуле изобретения, а также к фармацевтической композиции на их основе
Изобретение относится к производным янтарной кислоты, которые являются физиологически активными веществами, обладающими коронародилатоторным эффектом, кроме того, они могут быть использованы в качестве компонентов взрывчатых составов и порохов

Изобретение относится к физиологически активным соединениям и касается производных янтарной кислоты, конкретно нитратов N-алканолсукцинамидов или имидов, способа их получения, а также N-алканолсукцинамидов или имидов

Изобретение относится к области производства эфиров азотной кислоты, используемых при получении баллиститных порохов, промышленных взрывчатых веществ и жидких унитарных топлив

Изобретение относится к области производства эфиров азотной кислоты

Изобретение относится к новым нитратам спиртов общей формулы (I), где R', R", n, m представлены в формуле изобретения, способу их получения путем реакции нитрования 3-(ациламинодинитроалкил)-тетрагидро-1,3-оксазолов и -оксазинов
Наверх