Способы получения амина из нитрила гидрированием (варианты)

 

Изобретение относится к способам (вариантам) получения амина из нитрила гидрированием, включающим в себя: подачу водорода и нитрила в реактор, содержащий катализатор, воду и неорганическое основание, с образованием реакционной среды; перемешивание указанной реакционной среды и гидрирование указанного нитрила с образованием амина, при этом указанную реакционную среду подвергают перемешиванию таким образом, чтобы создать равномерную концентрацию указанного нитрила, по крайней мере, в одном направлении через указанный реактор, при этом локальная концентрация нитрила должна быть меньше той концентрации, которая требуется в стехиометрическом соотношении для полной выработки локальной концентрации водорода по всему объему реактора, либо указанную реакционную среду подвергают перемешиванию таким образом, чтобы снизить до минимума области, имеющие локальную концентрацию указанного нитрила больше, чем локальная концентрация указанного водорода по всему объему реактора. Способы позволяют снизить скорость химической дезактивации в системах гидрирования нитрилов. 19 з.п. ф-лы, 1 ил., 1 табл.

Изобретение относится к способу получения амина из нитрила, в котором реакцию проводят в присутствии катализатора. Изобретение также относится к реактору для получения амина из нитрила.

Предпосылки к созданию изобретения

Известно, что амины, такие как гексаметилендиамин, пропиламины, бутиламины, бензиламины, амины из твердого жира, этиламины и т.д., могут быть получены путем каталитического гидрирования нитрилов, таких как пропионитрил, бутиронитрилы, нитрилы из твердого жира, ацетонитрилы и т.д., в присутствии катализатора и других веществ, таких как аммиак и/или едкая щелочь. Как изложено в патенте США №3821305, основное содержание которого включено в данный текст в виде ссылки, один такой способ описан, в котором гидрирование проводят в жидкой фазе при давлении от 20 до 50 атмосфер и температуре 60-100С в присутствии тонко измельченного катализатора Ренея и неорганического основания. Водород и адипонитрил подают в жидкую реакционную среду, состоящую из гексаметилендиамина, воды, неорганического основания и катализатора, причем содержание основания в среде поддерживают в диапазоне 0,2-12 моль на килограмм катализатора, в то время как содержание воды поддерживают в диапазоне 2-130 моль на моль основания.

В обычных способах с непрерывным режимом, в которых применяют катализатор гидрирования никель Ренея или кобальт Ренея, скорость подачи катализатора в реакционную среду следует тщательно контролировать. Однако активные катализаторы такого типа являются пирофорными, и поэтому не допускают контакта их с воздухом, осуществляя транспортировку и хранение катализатора в относительно инертной жидкости. Следовательно, в некоторых из вышеупомянутых способов скорость, с которой катализатор подают в реакционную среду, желательно регулировать путем суспендирования катализатора в жидкости с тем, чтобы катализатор диспергировался в основном равномерно во всей жидкости в известной концентрации катализатора на единицу объема суспензии и контролирования скорости подачи объема суспензии в реакционную среду. Примеры способов, в которых скорость подачи катализатора можно регулировать указанным путем, описаны в патенте США №3821305, раскрытие которого включено в данный текст в виде ссылки, и в патенте США №3056837, раскрытие которого включено в данный текст в виде ссылки.

Однако катализаторы никель Ренея и кобальт Ренея в таких способах доставляют неприятности вследствие высокой скорости дезактивации в определенных условиях, в которых проводят гидрирование нитрилов. Например, в публикации Catalysis Today, 24, 103-109 (1995) указано, что нитрилы дезактивируют никелевые и кобальтовые катализаторы, такие как катализаторы никеля Ренея. Недавно были сделаны попытки снизить скорости дезактивации подобного катализатора. Например, известно, что в таких системах гидрирования при низком давлении необходимо установить высокие скорости рециркуляции жидкости в попытке создать условия хорошего перемешивания, достигаемые при турбулентном течении с тем, чтобы повысить стабильность катализатора и увеличить коэффициент массопередачи, как описано в Chemical Engineering Science, Vol. 35, 135-141 (1980).

Кроме того, были сделаны попытки изучить реакторы с целью оценки различных условий проведения опыта на скорости дезактивации катализатора. Например, в статье в Chemical Engineering Science, Vol. 47, № 9-11, 2289-94 (1992), описаны результаты исследования дезактивации катализатора в различных условиях проведения гидрирования адипонитрила в стендовом колонном реакторе с барботированием суспензии непрерывного действия. Полагают, что в подобном реакторе имеет место хорошее перемешивание, поскольку температура наверху и внизу колонны является одинаковой и различия в концентрации между образцами, взятыми наверху и внизу колонны, составляют менее 15%.

Кроме того, были предприняты попытки снизить дезактивацию катализатора путем физической защиты активных участков катализатора или доступа к участкам и оборудованию, загрязняющемуся при проведении реакций гидрирования, путем увеличения скорости массопередачи в реакционной системе, т.е. см. публикацию “Pumped-up Mixer Improves Hydrogenation”, Chemical Engineering, June 1998, p.19, в которой показано, что увеличение скорости массопередачи приводит к снижению физической дезактивации катализатора и степени загрязнения оборудования в реакциях гидрирования при производстве пищевых масел. Однако локальные концентрации реагентов в подобных реакторах значительно изменяются и не будут тормозить химическую дезактивацию катализатора (т.е. дезактивацию катализатора путем необратимой выработки элементов катализатора (например, промежуточного водорода), необходимых для достаточной каталитической активности в реакциях гидрирования нитрилов).

Однако недавно было обнаружено, что в противоположность предположениям и заключениям, сделанным в отношении конструкций вышеупомянутого реактора для гидрирования нитрилов, реагенты в таких реакторах совершенно не перемешиваются по направлению диаметра реактора. Согласно настоящему изобретению результаты сделанных исследований указывают на то, что локальная концентрация нитрила в таких реакторах является неравномерной и по большей части реактора локальная концентрация нитрила превышает ту концентрацию, которая требуется в стехиометрическом соотношении для полной выработки локальной концентрации водорода, что приводит к увеличению скорости химической дезактивации катализатора. Таким образом, необходимо подобрать определенные условия для реактора, которые будут способствовать снижению скорости химической дезактивации в системах гидрирования нитрилов.

Краткое описание сущности изобретения

Настоящее изобретение относится к способу получения амина из нитрила гидрированием, включающему подачу водорода и нитрила в реактор, содержащий катализатор, воду и неорганическое основание, с образованием реакционной среды, перемешивание реакционной среды для создания равномерной локальной концентрации нитрила в реакторе и гидрирование нитрила с образованием амина. Кроме того, настоящее изобретение относится к способу получения амина из нитрила гидрированием, при этом объем реактора снижен до минимума, где локальная концентрация нитрила превышает ту концентрацию, которая требуется в стехиометрическом соотношении для полной выработки локальной концентрации водорода.

Подробное описание предпочтительных аспектов

Хотя изобретение и применимо к способу получения любого амина, включая алифатические и ароматические амины и их производные, такие как гексаметилендиамин, пропиламины, бутиламины, бензиламины, амины из твердого жира, этиламины и т.д., из нитрила, включая алифатические и ароматические нитрилы и их производные, такие как пропионитрил, бутиронитрилы, нитрилы из твердого жира, ацетонитрилы, бензилнитрилы и т.д., в котором тонко измельченный катализатор суспендируют в жидкой реакционной среде, изобретение будет описано в плане предпочтительного способа такого получения.

Например, способ получения амина может быть выполнен при давлении 20-50 атмосфер и при температуре от 60 до 120С путем подачи водорода и нитрила в жидкую реакционную среду, содержащую, наряду с получаемым амином, воду, неорганическое основание и тонко измельченный никелевый или кобальтовый катализатор, диспергированный в жидких компонентах реакционной среды. Катализатор, которым предпочтительно является никель Ренея, с активатором металлов, таким как хром и/или железо, или без него, теряет большую часть своей активности в процессе гидрирования.

Для того чтобы сохранить данный уровень каталитической активности наряду с каталитической массой, необходимо постепенно заменять катализатор в реакционной среде. Эта замена достигается путем подачи свежего катализатора в реакционный сосуд и удаления количества реакционной среды, содержащей такое количество катализатора, которое равно количеству поданного катализатора. Поданный катализатор может представлять собой смесь свежего катализатора и регенерированного катализатора. Регенерированный катализатор является катализатором, который промывают до повторного использования.

Реакционная среда предпочтительно содержит:

(1) количество катализатора, составляющее свыше 1 части по весу на 100 частей жидкой реакционной среды (амин, вода и неорганическое основание), причем верхний предел зависит исключительно от текучести реакционной среды; предпочтительный диапазон составляет от 3 до 35 частей на 100 частей по весу жидкой реакционной среды;

(2) количество неорганического основания в диапазоне от 0,2 до 12 моль на килограмм катализатора и предпочтительно между 1 и 3 моль на килограмм катализатора;

(3) количество воды в диапазоне от 2 до 130 моль на моль неорганического основания и предпочтительно между 7 и 70 моль на моль неорганического основания.

Предпочтительно, когда неорганическое основание представляет собой гидроокись щелочного металла, такого как натрий, калий, литий, рубидий или цезий. Более предпочтительно неорганическое основание представляет собой смесь двух или более гидроокисей щелочных металлов. Например, синергетический эффект (например, повышенная стабильность катализатора и повышенная избирательность в отношении первичного амина) достигают путем использования смеси гидроокиси натрия и гидроокиси калия.

Жидкая часть реакционной среды при уже описанных начальных условиях и в пределах предпочтительного диапазона отношения воды к неорганическому основанию состоит из водного раствора неорганического основания, концентрация которого находится в области от 25 до 70%, предпочтительно от 30 до 60% и более предпочтительно от 40 до 50% по весу водного раствора. Другая фаза состоит из амина, содержащего воду и небольшие количества неорганического основания. Водный раствор неорганического основания, который представляет собой более тяжелую фазу, содержит большую часть катализатора.

В соответствии с настоящим изобретением обнаружено, что для снижения скорости химической дезактивации катализатора локальная концентрация нитрила должна быть равномерной, по крайней мере, в одном направлении в реакторе с такой же степенью реакции. Кроме того, в соответствии с настоящим изобретением, химическая дезактивация катализатора может быть снижена до минимума поддержанием таких условий, при которых локальная концентрация нитрила является меньше концентрации, требуемой в стехиометрическом соотношении для полной выработки локальной концентрации водорода в реакторе; например, один моль на литр адипонитрила в стехиометрическом соотношении требуется для полной выработки 4 моль на литр водорода (H2) с тем, чтобы получить один моль на литр гексаметилендиамина. В данном тексте указывают, что “химическая” дезактивация катализатора относится к снижению активности катализатора при изменении химического состава катализатора, “физическая” дезактивация катализатора относится к снижению активности катализатора при ограничении доступного числа активных участков катализатора, как, например, при блокировке пор катализатора (например, коксование), и локальная концентрация относится к средней концентрации химических компонентов в объеме образца, сконцентрированном на частице катализатора, вместе с объемом образца, имеющим диаметр приблизительно между диапазоном в 100 раз превышающим диаметр частицы катализатора и в 10 раз уменьшающим характерную для реактора протяженность, например, диаметр реактора в трубчатом реакторе. В настоящем изобретении градиенты “локальной” концентрации нитрила относятся к градиентам концентрации нитрила на протяжении некоего масштаба порядка величины размеров реактора скорее, чем к градиентам концентрации нитрила на протяжении некоего масштаба с размерами порядка величины частиц катализатора.

Например, в трубчатом реакторе степень реакции является в основном постоянной в плоскости, перпендикулярной оси трубы, в то время как в емкостном реакторе с перемешиванием степень реакции является в основном одинаковой во всех частях реактора. Как было упомянуто выше, скорости химической дезактивации катализатора выше в тех зонах реактора, где локальная концентрация нитрила превышает концентрацию, которая требуется в стехиометрическом соотношении для полной выработки локальной концентрации водорода и где такая локальная концентрация нитрила вступает в контакт с катализатором. Таким образом, настоящее изобретение способствует снижению скорости химической дезактивации катализатора в основном путем устранения градиентов локальной концентрации по всем зонам реактора с такой же степенью реакции, в то же время объем реактора снижается до минимума, где локальная концентрация нитрила превышает концентрацию, требуемую в стехиометрическом соотношении для полной выработки локальной концентрации водорода.

В общем, в зоне постоянной степени реакции коэффициент колебания концентрации нитрила (умноженное на 100 стандартное отклонение, деленное на среднее значение) составляет менее 250%, предпочтительно менее 150% и более предпочтительно менее 100%. В общем, условия в реакторе поддерживают такими, что локальная концентрация нитрила является меньше, чем локальная концентрация водорода, которая на всем протяжении выше, чем приблизительно 30% объема реактора, предпочтительно выше, чем приблизительно 40%, и более предпочтительно выше, чем приблизительно 50%.

Условия в реакторе, кроме того, поддерживаются такими, что локальная концентрация нитрила меньше той концентрации, которая требуется в стехеометрическом соотношении для полной выработки локальной концентрации водорода в объеме, составляющем более 92% объема реактора, предпочтительно более 95% объема реактора, наиболее предпочтительно более 99% объема реактора.

В аспекте настоящего изобретения способ гидрирования нитрила может быть выполнен в трубчатых реакторах такого типа, как газлифт.

Пример такого реактора, который является не ограничивающим изобретение примером, показан на чертеже.

Оборудование для выполнения способа в непрерывном режиме представляет собой стандартный тип оборудования. Пример такого оборудования, который не ограничивает изобретение, показан на чертеже. Аппаратура состоит в основном из вертикального трубчатого реакционного сосуда 1, снабженного внутри устройством для инжекции 2, чтобы стимулировать перемешивание реакционной среды, возникающее вследствие тока водорода 9, смесителя 30 и в верхней части контейнеров 3 и 4, которые приспособлены для отделения газа от жидкости и отвода из реакционного сосуда гидрированного продукта, имеющего низкое содержание катализатора, таким образом делая возможным поддерживать в реакционном сосуде относительно высокую концентрацию катализатора, например от 10 до 30 частей катализатора на 100 частей по весу жидкой реакционной среды.

Аппаратура также включает в себя насос 5 для возврата в цикл газа и трубок для подачи в реакционный сосуд адипонитрила 8, водного раствора каустической соды 7 и водорода 9. Израсходованный водород пополняют путем подачи свежего водорода через трубку 10.

Часть газа выпускают через трубку 11, причем целью этого высвобождения является поддержание количества водорода в регенерированном газе выше данной величины.

Поток продукта 12 направляют в декантер 14, где верхний слой, содержащий неочищенный гексаметилендиамин, выгружают через трубку 15 в отстойник 16, отсюда через трубку 24 к последующим операциям по очистке, включая перегонку. Нижний слой в декантере 14 разделяют на две порции, первую подают к трубке 6, через которую возвращают в реактор, и вторую порцию подают к трубке 25, которая подведена к резервуару для промывки 17. В резервуар для промывки 17 подают воду через трубку 26 и промытый катализатор возвращают в реактор через емкость для катализатора 19 и трубку 20. Воду после промывки катализатора спускают из резервуара 17 в запасной резервуар 22 через трубку 21, отсюда через трубку 23 к трубке 16.

В трубчатых реакторах скорость потока реакционной среды для гидрирования нитрилов является достаточно высокой (т.е. турбулентное течение с числом Рейнольдса выше 2000). Даже при турбулентном течении, которое, как полагают, обеспечивает достаточное перемешивание реакционной среды, в этих реакторах устанавливается неравномерная локальная концентрация.

Для обеспечения равномерной локальной концентрации нитрила настоящего изобретения необходимо подключить дополнительные механизмы перемешивания. Такое дополнительное перемешивание может быть осуществлено с помощью статических смесителей, механических смесителей, струйных смесителей или при использовании конструкции реактора. В трубчатых реакторах перемешивание выполняют предпочтительно с помощью статических смесителей.

Например, смесителем 30 может быть статический смеситель, такой как вихревой смеситель с низким давлением, диафрагменный смеситель, сопловой смеситель, клапаны, насос, линейный смеситель со встряхиванием, упакованные трубы или длинный трубопровод. Кроме того, смесителем 30 может быть механический смеситель, такой как пропеллер, насос или тому подобное; или смесителем 30 может быть струйный смеситель. Предпочтительно, когда смесителем является статический смеситель, более предпочтительно вихревой смеситель с низким давлением. Смеситель может быть помещен в различные места реактора. Однако, чтобы с большей эффективностью достичь равномерной локальной концентрации нитрила, смеситель помещают в реакционный сосуд в непосредственной близости от места подачи нитрила.

Равномерная концентрация нитрила может быть достигнута с помощью других форм реактора, таких как емкостные реакторы с перемешиванием, колонные реакторы с барботированием и тому подобное. Такие условия перемешивания могут быть достигнуты, которые упомянуты в данном тексте.

Примеры

Перемешивание контролируют посредством экспериментов, осуществляющих визуализацию потока, включающих, например, введение красителя в масштабируемую или полномасштабную прозрачную модель реактора, или его рассчитывают, применяя вычислительную гидродинамику. В настоящих примерах применяют изображенный на чертеже газлифт-реактор для получения гексаметилендиамина из адипонитрила и водорода с катализатором - никелем Ренея.

Условия потока поддерживают таковыми, что число Рейнольдса реакционной массы составляет приблизительно 1,6 миллиона.

В таблице приведен коэффициент колебания общей концентрации нитрила как функция положения в реакторе со смесителем и без него. Применяемым в этих примерах смесителем является статический смеситель, в частности вихревой смеситель с низким давлением. Смеситель помещают непосредственно выше места подачи струи адипонитрила в реактор.

В отсутствие смесителя среднее колебание общей концентрации нитрила составляет 185%. При использовании статического смесителя среднее колебание общей концентрации нитрила снижается до 39%.

В отсутствие смесителя локальная концентрация нитрила превышает концентрацию, требуемую в стехиометрическом соотношении для полной выработки локальной концентрации водорода приблизительно в 8% объема реактора после распределителя адипонитрила. При использовании статического смесителя локальная концентрация нитрила превышает концентрацию, которая требуется в стехиометрическом соотношении для полной выработки локальной концентрации водорода в менее чем 1% объема реактора после распределителя адипонитрила.

Формула изобретения

1. Способ получения амина из нитрила гидрированием, включающий в себя подачу водорода и нитрила в реактор, содержащий катализатор, воду и неорганическое основание, с образованием реакционной среды; перемешивание указанной реакционной среды и гидрирование указанного нитрила с образованием амина, отличающийся тем, что указанную реакционную среду подвергают перемешиванию таким образом, чтобы создать равномерную концентрацию указанного нитрила, по крайней мере, в одном направлении через указанный реактор, при этом локальная концентрация нитрила должна быть меньше той концентрации, которая требуется в стехиометрическом соотношении для полной выработки локальной концентрации водорода по всему объему реактора.

2. Способ по п.1, в котором указанным нитрилом является адипонитрил и указанным амином является гексаметилендиамин.

3. Способ по п.1, в котором указанное неорганическое основание представляет собой гидроокись щелочного металла.

4. Способ по п.1, в котором указанное неорганическое основание представляет собой гидроокись лития, гидроокись натрия, гидроокись калия, гидроокись рубидия или гидроокись цезия.

5. Способ по п.1, в котором указанное неорганическое основание представляет собой смесь гидроокиси натрия и гидроокиси калия.

6. Способ по п.1, в котором катализатором является катализатор никель Ренея в виде тонко измельченных частиц.

7. Способ по п.1, в котором указанный реактор представляет собой емкостной реактор с перемешиванием, газлифт-реактор, трубчатый реактор или колонный реактор с барботированием.

8. Способ по п.1, в котором указанным реактором является газлифт-реактор.

9. Способ по п.1, в котором указанный смеситель представляет собой статический смеситель, механический смеситель или струйный смеситель.

10. Способ по п.1, в котором указанный смеситель создает турбулентный поток указанной реакционной среды, имеющий число Рейнольдса, по крайней мере, 2000.

11. Способ по п.1, в котором гидрирование выполняют при давлении от 20 до 50 атм и температуре от 60 до 120С.

12. Способ по п.1, в котором в пределах зон, в основном, с равномерной степенью реакции коэффициент колебания концентрации нитрила, по крайней мере, в одном направлении через реактор составляет менее 250%.

13. Способ по п.1, в котором в пределах зон, в основном, с равномерной степенью реакции коэффициент колебания концентрации нитрила, по крайней мере, в одном направлении через реактор составляет менее 150%.

14. Способ по п.1, в котором в пределах зон, в основном, с равномерной степенью реакции коэффициент колебания концентрации нитрила, по крайней мере, в одном направлении через реактор составляет менее 100%.

15. Способ по п.1, в котором локальная концентрация нитрила меньше той концентрации, которая требуется в стехиометрическом соотношении для полной выработки локальной концентрации водорода в объеме, составляющем более 92% объема реактора.

16. Способ по п.1, в котором локальная концентрация нитрила меньше той концентрации, которая требуется в стехиометрическом соотношении для полной выработки локальной концентрации водорода в объеме, составляющем более 95% объема реактора.

17. Способ по п.1, в котором локальная концентрация нитрила меньше той концентрации, которая требуется в стехиометрическом соотношении для полной выработки локальной концентрации водорода в объеме, составляющем более 99% объема реактора.

18. Способ получения амина из нитрила гидрированием, включающий в себя подачу водорода и нитрила в реактор, содержащий катализатор, воду и неорганическое основание, с образованием реакционной среды; перемешивание указанной реакционной среды и гидрирование указанного нитрила с образованием амина, отличающийся тем, что указанную реакционную среду подвергают перемешиванию таким образом, чтобы снизить до минимума области, имеющие локальную концентрацию указанного нитрила больше, чем локальная концентрация указанного водорода по всему объему реактора.

19. Способ по п.18, в котором локальная концентрация нитрила меньше той концентрации, которая требуется в стехиометрическом соотношении для полной выработки локальной концентрации водорода в объеме, составляющем более 92% объема реактора.

20. Способ по п.18, в котором локальная концентрация нитрила меньше той концентрации, которая требуется в стехиометрическом соотношении для полной выработки, локальной концентрации водорода в объеме, составляющем более 95% объема реактора.

21. Способ по п.18, в котором локальная концентрация нитрила меньше той концентрации, которая требуется в стехиометрическом соотношении для полной выработки локальной концентрации водорода в объеме, составляющем более 99% объема реактора.

РИСУНКИ

Рисунок 1



 

Похожие патенты:
Изобретение относится к способу получения аминонитрила и диамина путем каталитического гидрирования алифатического динитрила, в частности к получению 6-аминокапронитрила и гексаметилендиамина

Изобретение относится к способу гидрирования алифатических динитрилов с превращением их в соответствующие аминонитрилы
Изобретение относится к способу фильтрации трехфазной реакционной смеси, включающей жидкую фазу, твердую нерастворенную каталитическую фазу и газообразную фазу

Изобретение относится к новым соединениям формулы I, где R1 является фенилом, замещенным одним или более чем одним заместителем, каждым выбранным независимо от другого из алкокси от 1 до 10 атомов углерода, циклоалкокси от 3 до 10 атомов углерода; R2 является Н, алкилом от 1 до 8 атомов углерода, бензилом; R3 является циклоалкиленом от 4 до 9 атомов углерода, о-фениленом, незамещенным или замещенным одним или более чем одним заместителем, каждым выбранным независимо от другого из нитро, амино; R4 является -СО-, -СН2-; n = 2; при условии, что соединение формулы I не может представлять собой 3-фталимидо-3-(3',4'-диметоксифенил)пропан-1-ол

Изобретение относится к способу каталитического гидрирования нитрилов до аминов
Изобретение относится к области каталитической гидрогенизации нитрилов до аминов, и в частности динитрилов, таких как адипонитрил, до диаминов, таких как гексаметилендиамин

Изобретение относится к способу селективной гидрогенизации динитрильного соединения общей формулы NC-(CH2)nCN, где n= 1-6, в присутствии катализатора, содержащего металл 8 группы Периодической системы элементов - никель и цеолит, имеющий размер пор с диаметром от 0,3 до 0,7 нм, предпочтительно 0,3-0,5 нм

Изобретение относится к способу получения первичного амина гидрированием нитрилов, при котором реакция превращения протекает в реакционной смеси, которая содержит: (а) по меньшей мере, один нитрил, (б) водород, (в) при необходимости, аммиак и (г) по меньшей мере, один кобальтовый или никелевый катализатор, модифицированный ex situ адсорбцией карбоната щелочного металла или гидрокарбоната щелочного металла, который содержит карбонат или гидрокарбонат щелочного металла в количестве от 2 до 12 мас.%
Изобретение относится к способу получения 3-диметиламинопропиламина, используемого в качестве промежуточного продукта в органическом синтезе

Изобретение относится к получению высокомолекулярных аминов каталитическим гидрированием нитрилов и может быть использовано в производстве удобрений, биоцидов для нефтедобычи, горнорудной промышленности, фармацевтических препаратов, поверхностно-активных веществ

Изобретение относится к пентафторсульфанилбензолам формулы I в которой означаютR1 Cl, Br, I, -CN, -SO2R6, NO2, алкокси с 1, 2, 3 или 4 C-атомами, NR7R8, -O-(CH2)b -(CF2)c-CF3, -(SOd )e-(CH2)f-(CF2) g-CF3, алкил с 1, 2, 3, 4, 5 или 6 C-атомами или циклоалкил с 3, 4, 5, 6, 7 или 8 C-атомами, в котором 1, 2, 3 или 4 атома водорода могут быть замещены атомами фтора; R6 OH, F, Cl, Br, I или алкил с 1, 2, 3 или 4 C-атомами; R7 и R8 независимо друг от друга водород, алкил с 1, 2, 3 или 4 C-атомами или -CH2-CF3; b и c независимо друг от друга ноль или 1; d ноль, 1 или 2;e ноль или 1; f ноль, 1, 2, 3 или 4;g ноль или 1; илиR1 -(CH2)h-фенил или -O-фенил,в котором фенильные остатки не замещены или замещены 1, 2 или 3 остатками, выбранными из группы, состоящей из F, Cl, Br, I, -Oj-(CH2)k-CF 3, алкокси с 1, 2, 3 или 4 C-атомами, алкила с 1, 2, 3 или 4 C-атомами и -SO2CH3; j ноль или 1;k ноль, 1, 2 или 3; h ноль, 1, 2, 3 или 4;илиR1 -(CH 2)l-гетероарил,который не замещен или замещен 1, 2 или 3 остатками, выбранными из группы, состоящей из F, Cl, Br, I, -Om-(CH2)n-CF 3, алкокси с 1, 2, 3 или 4 C-атомами, алкила с 1, 2, 3 или 4 C-атомами и -SO2CH3; m ноль или 1;n ноль, 1, 2 или 3; l ноль, 1, 2, 3 или 4;R2 и R4 независимо друг от друга водород, F, Cl, Br, I, -CN, NR9R10, -OR11, -SR12, -COR13, -SOqCH3, -(SOr)s-(CH 2)t-(CF2)u-CF3 , алкил с 1, 2, 3, 4, 5 или 6 C-атомами, циклоалкил с 3, 4, 5, 6, 7 или 8 C-атомами, в котором 1, 2, 3 или 4 атома водорода могут быть замещены атомами фтора;R9 и R10 независимо друг от друга алкил с 1, 2, 3 или 4 C-атомами, -(CH2 )v-(CF2)w-CF3, алкилкарбонил с 1, 2, 3 или 4 C-атомами, алкилсульфонил с 1, 2, 3 или 4 C-атомами; или R9 и R10 вместе с соединенным с ними атомом азота образуют гетероцикл формулы III X и Y независимо друг от друга CO или SO2;R11 и R12 независимо друг от друга водород, алкил с 1, 2, 3 или 4 C-атомами,-(CH 2)v-(CF2)w-CF3 , алкилкарбонил с 1, 2, 3 или 4 C-атомами, алкилсульфонил с 1, 2, 3 или 4 C-атомами;R13 OH, алкил с 1, 2, 3, 4, 5 или 6 C-атомами или алкокси с 1, 2, 3, 4, 5 или 6 C-атомами; q и r независимо друг от друга 1 или 2; s ноль или 1;t ноль, 1, 2, 3 или 4; u ноль или 1;v ноль, 1, 2, 3 или 4; w ноль или 1;R3 водород, F, Cl, Br, I, -CN, -NO 2, -COR14, -SO2CH3, алкил с 1, 2, 3, 4, 5 или 6 C-атомами, алкокси с 1, 2, 3 или 4 C-атомами, -O x-(CH2)y-CF3, R14 OH, алкил с 1, 2, 3, 4, 5 или 6 C-атомами, алкокси с 1, 2, 3, 4, 5 или 6 C-атомами или -Oaa-(CH2) bb-CF3;x ноль или 1; y ноль, 1, 2 или 3;aa ноль или 1; bb ноль, 1, 2 или 3;R5 водород, F, Cl, Br, I, -CN, -SO2CH3, алкокси с 1, 2, 3 или 4 C-атомами, NR15R16, -O-(CH2)ee-(CF2) ff-CF3, -(SOgg)hh-(CH 2)jj-(CF2)kk-CF3 , алкил с 1, 2, 3, 4, 5 или 6 C-атомами или циклоалкил с 3, 4, 5, 6, 7 или 8 C-атомами, в котором 1, 2, 3 или 4 атома водорода могут быть замещены атомами фтора;R15 и R16 независимо друг от друга водород, алкил с 1, 2, 3 или 4 C-атомами или -CH 2-CF3;ee и ff независимо друг от друга ноль или 1;gg ноль, 1 или 2; hh ноль или 1;jj ноль, 1, 2, 3 или 4; kk ноль или 1;илиR5 -(CH 2)ll-фенил или -O-фенил,в котором фенильные остатки не замещены или замещены 1, 2 или 3 остатками, выбранными из группы, состоящей из F, Cl, Br, I, -Omm -(CH2)nn-CF3, алкокси с 1, 2, 3 или 4 C-атомами, алкила с 1, 2, 3 или 4 C-атомами и -SO 2CH3;mm ноль или 1; nn ноль, 1, 2 или 3;ll ноль, 1, 2, 3 или 4; илиR5 -(CH2)oo -гетероарил,который не замещен или замещен 1, 2 или 3 остатками, выбранными из группы, состоящей из F, Cl, Br, I, -Opp-(CH2)rr-CF3 , алкокси с 1, 2, 3 или 4 C-атомами, алкила с 1, 2, 3 или 4 C-атомами и -SO2CH3;pp ноль или 1; rr ноль, 1, 2 или 3;oo ноль, 1, 2, 3 или 4;а также их соли;причем исключаются соединения формулы I, в которых R2 и R4 означают Cl, R3 означает F или Cl,исключаются соединения формулы I, в которых один из заместителей R2 и R4 означает Cl, другой из заместителей R4 и R2 означает CN, и R3 означает Cl, иисключаются соединения формулы I, в которых R1 означает NO2, другие заместители - водород

Изобретение относится к способу получения производных 2-(аминометил)-3-фенил-бицикло[2.2.1]гептанов общей формулы которые могут быть использованы в медицине как активное начало лекарственных препаратов, обладающих тимоаналептическим, тонизирующим действием, заключающемуся во взаимодействии акрилонитрила с соответствующим хлоридом нитрофенилдиазония с последующим дегидрогалогенированием синтезированного продукта с получением соответствующих транс-изомеров производных нитрилов коричных кислот, которые затем взаимодействуют с циклопентадиеном, и последующему восстановлению полученных в результате этого взаимодействия замещенных 3-фенил-бицикло[2.2.1]гепт-5-ен-2-карбонитрилов водородом, причем восстановление замещенных 3-фенил-бицикло [2.2.1]гепт-5-ен-2-карбонитрилов проводят активным водородом, полученным в результате реакции алюминия, содержащегося в никельалюминиевом сплаве, с гидроксидом калия, при добавлении водного раствора гидроксида калия и порошкообразного никельалюминиевого сплава к раствору замещенных 3-фенил-бицикло[2.2.1]гепт-5-ен-2-карбонитрилов в тетрагидрофуране

Изобретение относится к улучшенному способу производства первичных алифатических диаминов, таких как гексаметилендиамин, гидрированием динитрильного соединения, такого как адипонитрил, в присутствии катализатора гидрирования

Изобретение относится к улучшенному способу синтеза алифатических диаминов, таких как гексаметилендиамин, гидрированием алифатических динитрильных соединений, таких как адипонитрил, состоящий в том, что подают газ, содержащий водород, и динитрильное соединение, такое как адипонитрил, в реактор вытеснительного типа, в котором циркулирует реакционная смесь, содержащая суспендированные частицы катализатора на основе металла Ренея, неорганическое основание и воду; отводят на выходе из реактора вытеснительного типа одну часть реакционной смеси, содержащей аминосоединение, после отделения катализатора и рециркулируют другую часть в реактор вытеснительного типа, затем рециркулируют отделенный катализатор в реактор вытеснительного типа и подают в реактор вытеснительного типа поток нового катализатора

Изобретение относится к катализатору на основе смешанных оксидов для гидрирования органических соединений, способу его получения и способу гидрирования
Наверх