Способ регулирования номинального тока нагрузки и устройство для его осуществления

 

Изобретение относится к способу и системам управления ракетами и может быть использовано в силовых электрических цепях с индуктивно-активной нагрузкой, в которых применяется широтно-импульсный метод регулирования. Технический результат заключается в повышении точности регулирования номинального тока нагрузки при исключении нестабильности за счет автоматической регулировки коэффициента дополнительной широтно-импульсной модуляции. Для этого в способе широтно-импульсный модулированный сигнал управления подвергают дополнительной широтно-импульсной модуляции, при этом измеряют величину тока нагрузки, сравнивают ее с величинами заданных порогов включения и выключения нагрузки, а по результатам сравнения устанавливают величину коэффициента дополнительной широтно-импульсной модуляции, которым задают номинальный ток нагрузки. А устройство содержит источник питания, формирователь широтно-импульсного модулирования (ШИМ) сигнала управления, нагрузку, электронный ключ, датчик тока, двухпороговое устройство сравнения с задатчиком порогов включения и выключения нагрузки и схему совпадения. 2 ил.

Изобретение относится к способу и системам управления ракетами и может быть использовано в силовых электрических цепях с индуктивно-активной нагрузкой, в которых применяется широтно-импульсный метод регулирования.

Известен способ регулирования номинального тока нагрузки и устройство, его реализующее [1]. Способ регулирования номинального тока нагрузки заключается в том, что приемник энергии (стабилитрон) коммутируют широтно-импульсным модулированным сигналом управления, который дополнительно подвергают вторичной широтно-импульсной модуляции, и этим сигналом коммутируют нагрузку.

Известно устройство регулирования, реализующее этот способ, содержащее последовательно включенные источник питания, нагрузку, коллектор-эмиттерный (к-э) переход первого транзистора, при этом нагрузка шунтирована цепочкой, состоящей из последовательно соединенных диода и стабилитрона, стабилитрон шунтирован к-э переходом второго транзистора, базы первого и второго транзисторов подключены соответственно к схеме управления.

Эти известные способ регулирования номинального тока нагрузки и устройство для его осуществления обладают довольно высоким коэффициентом полезного действия за счет малых потерь энергии, т.е. весьма экономичны, что обуславливает широкое применение их в устройствах с автономным источником питания небольшой емкости, например в выходных каскадах релейного усилителя мощности.

Поскольку сигнал, осуществляющий регулирование величины номинального тока нагрузки (скважность базового тока транзистора Т1), формируют, например, несимметричным мультивибратором с помощью внешних конденсаторов, которые настраивают мультивибратор на требуемый коэффициент заполнения (Кз), то при этом осуществляют предварительное выставление коэффициента Кз=const, являющегося коэффициентом дополнительной широтно-импульсной модуляции (дополнительной периодической коммутации сигнала).

Таким образом, в процессе функционирования способа и устройства коэффициент Кз не регулируется, при этом изменение параметров схемы, например сопротивления нагрузки (из-за температурных воздействий, при хранении и т.д.), приведет к изменению (нестабильности) номинальной величины тока, протекающего через эту нагрузку. Особенно актуальна эта нестабильность при изменении напряжения бортового источника питания (батареи), например при ее разряде в процессе полета ракеты, поскольку величина тока через нагрузку прямо пропорциональна величине напряжения источника питания.

Следовательно, недостатком известных способа и устройства является их низкая точность регулирования (поддержания постоянной величины) номинального тока нагрузки из-за нерегулируемого коэффициента вторичной (дополнительной) широтно-импульсной модуляции, что затрудняет их применение в бортовой аппаратуре управления ракетой.

Задачей настоящего изобретения является повышение точности регулирования номинального тока нагрузки при исключении нестабильности за счет автоматической регулировки коэффициента дополнительной широтно-импульсной модуляции.

Поставленная задача решается за счет того, что в способе регулирования номинального тока нагрузки широтно-импульсный модулированный сигнал управления подвергают дополнительной широтно-импульсной модуляции, при этом измеряют величину тока нагрузки, сравнивают ее с величиной заданных порогов включения и выключения нагрузки, а по результатам сравнения устанавливают величину коэффициента дополнительной широтно-импульсной модуляции, которым задают номинальный ток нагрузки.

Устройство регулирования номинального тока нагрузки, реализующее способ, содержит источник питания, формирователь широтно-импульсного модулированного (ШИМ) сигнала управления, последовательно включенные нагрузку и электронный ключ, в него введены последовательно соединенные датчик тока, двухпороговое устройство сравнения с задатчиком порогов включения и выключения нагрузки и схема совпадения, второй вход которой подключен к выходу формирователя ШИМ сигнала управления, а выход схемы совпадения соединен с управляющим входом электронного ключа, при этом первый вход датчика тока соединен с источником питания, второй вход - со вторым выводом нагрузки.

Заявленный способ реализуется следующим образом. В бортовой аппаратуре ракеты из сигнала наведения ракеты на цель формируют команду управления ракетой в виде широтно-импульсного модулированного сигнала управления, который можно представить как сигнал с двумя логическими уровнями по амплитуде (нулевым и единичным), при этом его скважность - это величина обрабатываемой команды.

Этот сигнал поступает через схему разрешения на вход управления сильноточного электронного ключа, коммутирующего ток, протекающий через индуктивно-активную нагрузку исполнительного механизма.

С помощью резистора, включенного последовательно с индуктивно-активной нагрузкой, измеряют напряжение, которое прямо пропорционально току. Замеренную величину тока, преобразованную в напряжение, сравнивают с величиной двух порогов: максимального (выключения нагрузки) и минимального (включения нагрузки), которые выставляют, например, соответственно в первом и во втором пороговых устройствах, выходы которых подключены соответственно к R- и S-входам RS-триггера, разные логические уровни. Таким образом, при величине тока нагрузки меньше минимального на выходе RS-триггера будет единичный логический уровень, который через схему разрешения замкнет электронный ключ, а при величине тока больше максимального значения - разомкнет, т.е. соответственно нагрузка будет подключена либо отключена от источника питания.

Таким образом, сигнал управления будет дополнительно коммутироваться, т.е. подвергаться дополнительной широтно-импульсной модуляции с более высокой частотой, определяемой, например, постоянными времени индуктивно-активной нагрузки.

Как следует из изложенного, при наличии единичного логического уровня в сигнале управления ток через нагрузку будет иметь пилообразный вид с постоянной составляющей (как в прототипе), но при этом величина его автоматически поддерживается постоянной и определяется соответственно заданной величиной порогов включения и выключения. При наличии нулевого логического уровня в сигнале управления ток через нагрузку не будет протекать.

Предлагаемое изобретение поясняется фиг.1 и 2. На фиг.1 приведена структурная электрическая схема устройства регулирования номинального тока нагрузки, где представлены: 1 - задатчик порогов включения и выключения нагрузки, 2 - формирователь ШИМ сигнала управления, 3 - датчик тока, 4 - двухпороговое устройство сравнения, 5 - схема совпадения, 6 - операционный усилитель, R - резистор, Е - источник питания (батарея), ZН - индуктивно-активная нагрузка, VT - транзистор (электронный ключ).

На фиг.2 приведены эпюры сигналов, где представлены: а - напряжение на выходе формирователя ШИМ сигнала управления 2, б - сигнал на выходе схемы совпадения 5, в - ток нагрузки ZН, г - напряжение коллектор-эмиттер транзистора VT.

Нагрузка ZН последовательно включена с электронным ключом (к-э переходом транзистора VT). Последовательно соединены датчик тока 3, двухпороговое устройство сравнения 4 с задатчиком порогов включения и выключения нагрузки 1 и схема совпадения 5. Второй вход схемы совпадения 5 подключен к выходу формирователя ШИМ сигнала управления 2, а выход схемы совпадения 5 соединен с управляющим входом электронного ключа (базой транзистора VT), при этом первый вход датчика тока 3 соединен с источником питания Е. Второй вход датчика тока 3 соединен со вторым выводом нагрузки ZН.

Соединение эмиттерного вывода транзистора VT со вторым выводом батареи и корпусом является не существенным признаком, т.к. устройство может быть выполнено, например, с использованием двух разнополярных источников питания, выводы разнополярных знаков которых соединены с корпусом, при этом второй вывод второго источника питания соединяют с эмиттером транзистора.

Задатчик порогов включения и выключения нагрузки 1 может быть выполнен как два делителя напряжения, подключенные ко входам соответственно первого и второго пороговых устройств (как изложено выше в заявленном способе), при этом входы делителей напряжения подключены к стабилизированному источнику напряжения. Формирователь ШИМ сигнала управления 2 может быть выполнен как преобразователь сигнала управления ракетой из аналогового или цифрового вида в сигнал с ШИМ, например, с помощью компаратора, на первый вход которого подают этот сигнал управления, а на второй - пилообразное напряжение, изменяемое синхронно с углом вращения ракеты по крену (для ракет, вращающихся по крену на траектории полета).

Датчик тока 3 может быть выполнен как низкоомный резистор (R), подключенный ко входам операционного усилителя 6 через первый и второй делители напряжения. Двухпороговое устройство сравнения 4 может быть выполнено как изложено выше (в заявленном способе) либо, например, на компараторе с гистерезисом, при этом задатчик порогов срабатывания формирует постоянную величину напряжения смещения, и за счет положительной обратной связи (петли гистерезиса) сформируются уровни напряжений срабатывания и отпускания компаратора, например, как приведено в [2] (с учетом дополнительного постоянного напряжения смещения, формирующего однополярную петлю гистерезиса).

Схема совпадения 5 может быть выполнена как двухвходовая логическая схема И.

Устройство регулирования номинального тока нагрузки работает следующим образом. Формирователь ШИМ сигнала управления 2 (для улучшения экономичности системы управления ракетой) преобразует сигнал управления ракетой из аналогового или цифрового вида в ШИМ. При наличии на первом входе схемы совпадения 5 единичного логического уровня с выхода двухпорогового устройства сравнения 4 (эпюра б на фиг.2) и единичного логического уровня с выхода формирователя ШИМ сигнала 2 (эпюра а на фиг.2) на выходе схемы 5 сформируется высокий уровень напряжения, который обеспечит подключение транзистором VT нагрузки ZН к источнику питания Е. Через индуктивно-активную нагрузку ZН начнет протекать ток (эпюра в на фиг.2). При достижении величиной тока верхнего значения iВ напряжение на выходе датчика тока 3 достигает значения порога выключения нагрузки, определяемого задатчиком 1, и на выходе порогового устройства 4 сформируется логический нулевой уровень (эпюра б на фиг.2), который запретит прохождение единичного логического уровня сигнала с выхода формирователя 2 (эпюра а на фиг.2), при этом транзистор VT отключит нагрузку ZН от источнику питания. Ток, протекающий через нагрузку ZН, начнет уменьшаться до нижнего значения iН, при котором напряжение на выходе датчика тока 3 достигает значения порога включения нагрузки. При этом на выходе порогового устройства 4 сформируется логический единичный уровень (эпюра б на фиг.2), который разрешит прохождение единичного логического уровня сигнала с выхода формирователя 2 (эпюра а на фиг.2) и транзистор VT вновь подключит нагрузку ZН к источнику питания. Ток через нагрузку ZН вновь начинает расти и т.д. до появления нулевого логического уровня на выходе формирователя 2 (эпюра а на фиг.2).

Как следует из фиг.2, эпюра б представляет собой дополнительно широтно-импульсный модулированный сигнал, изображенный на эпюре а, являющийся ШИМ сигналом управления.

На эпюре г (фиг.2) изображено напряжение к-э перехода транзистора VT с выбросами, обусловленными ЭДС самоиндукции в нагрузке ZН. Нагрузка ZН может быть шунтирована цепочкой из последовательно включенных диода и стабилитрона как в прототипе.

Устройство регулирования номинального тока нагрузки может быть выполнено и иначе, например для двух идентичных индуктивно-активных нагрузок, поочередно подключаемых к источнику питания в течение времени t0-t1 и t1-t2 соответственно. При этом эпюры сигналов, приведенные на фиг.2 для первой нагрузки, сохранятся, а для второй (с момента подключения нагрузки) они сдвинуты и будут иметь место при t1-t2, т.к. вторая нагрузка работает в противофазе к первой по сигналу управления (эпюра а на фиг.2).

Таким образом, в способе регулирования номинального тока нагрузки за счет измерения величины тока нагрузки, сравнения ее с величинами заданных порогов включения и выключения, по результатам которого устанавливают величину коэффициента дополнительной широтно-импульсной модуляции, которым задают номинальный ток нагрузки, осуществляют автоматическую регулировку (подстройку) номинального тока нагрузки по заданной наперед величине, что позволяет поддерживать постоянной величину тока нагрузки в широком интервале воздействий внешних (температура и т.д.) и внутренних (изменение параметров электрорадиоэлементов, величины напряжений источника питания и т.д.) либо изменять по заданной наперед программе величину номинального тока, например, во времени.

Введение в устройство регулирования номинального тока нагрузки датчика тока, двухпорогового устройства сравнения с задатчиком порогов включения и выключения нагрузки и схемы совпадения автоматически регулирует величину тока, протекающего через нагрузку, и поддерживает ее постоянной при изменении параметров в широком диапазоне, например, величины напряжения источника питания (батареи) и т.д.

Источники информации

1. Л.И. Леоненко. Полупроводниковые форсирующие схемы. - М.: Энергия, 1974 г., стр. 53 и 54, рис. 36, стр. 83 и 84.

2. У. Титце, К. Шенк. Полупроводниковая схемотехника, М.: Мир, 1983 г., стр. 288 и 289.

Формула изобретения

1. Способ регулирования номинального тока нагрузки, согласно которому широтно-импульсный модулированный сигнал управления подвергают дополнительной широтно-импульсной модуляции, отличающийся тем, что измеряют величину тока нагрузки, сравнивают ее с величинами заданных порогов включения и выключения нагрузки, а по результатам сравнения устанавливают величину коэффициента дополнительной широтно-импульсной модуляции, которым задают номинальный ток нагрузки.

2. Устройство регулирования номинального тока нагрузки, содержащее источник питания, формирователь широтно-импульсного модулированного (ШИМ) сигнала управления, последовательно включенные нагрузку и электронный ключ, отличающееся тем, что в него введены последовательно соединенные датчик тока, двухпороговое устройство сравнения с задатчиком порогов включения и выключения нагрузки и схема совпадения, второй вход которой подключен к выходу формирователя ШИМ сигнала управления, а выход схемы совпадения соединен с управляющим входом электронного ключа, при этом первый вход датчика тока соединен с источником питания, второй вход - со вторым выводом нагрузки.

РИСУНКИ

Рисунок 1, Рисунок 2



 

Похожие патенты:

Изобретение относится к электротехнике, в частности, к стабилизированным источникам тока

Изобретение относится к электротехнике, в частности к стабилизированным источникам тока

Изобретение относится к автоматическому регулированию постоянных токов и может быть использовано для регулирования отношения токов в нагрузках

Изобретение относится к электротехнике и может быть использовано во вторичных источниках питания электроаппаратуры

Изобретение относится к системам регулирования тока нагрузки и может использоваться в электроприводах и источниках вторичного электропитания

Изобретение относится к способам управления импульсными преобразователями постоянного напряжения

Изобретение относится к электротехнике, к преобразователям переменного напряжения в постоянное для обеспечения защиты нагрузки от перенапряжений, возникающих в источнике переменного напряжения

Изобретение относится к электротехнике и может быть использовано для компенсации избыточной реактивной мощности линии электропередачи и изменения на ней в широких пределах общего уровня напряжения

Изобретение относится к области электрорадиотехники и может быть использовано в качестве маломощных источников опорного напряжения в различных функциональных узлах аналоговых интерфейсов

Изобретение относится к электротехнике, в частности к управляемым реакторам-автотрансформаторам (УРАТ), и может быть использовано для компенсации избыточной реактивной мощности высоковольтной линии электропередачи и изменения на ней в широких пределах общего уровня напряжения

Изобретение относится к области технологического оборудования для ультразвуковой обработки самого различного назначения

Изобретение относится к области производства алюминия из криолит-глиноземных расплавов, более конкретно к энергетическим промышленным установкам, преобразующим переменный ток промышленной частоты в постоянный ток для питания электролизных серий

Изобретение относится к электротехнике

Изобретение относится к электротехнике, в частности к преобразовательной технике и энергетической электронике, и может быть использовано в сложных замкнутых сетях переменного тока

Изобретение относится к области контроля и управления технологическим процессом производства алюминия электролизом криолит-глиноземных расплавов и может быть использовано для стабилизации технологического режима и повышения производительности электролизных ванн
Наверх