Способ изготовления керамических расклинивателей нефтяных скважин

 

Изобретение относится к области формованных керамических изделий и может быть использовано для изготовления керамических расклинивателей нефтяных и газовых скважин. Способ изготовления керамических расклинивателей характеризуется тем, что в качестве керамического материала берут материал на основе форстерита, с содержанием последнего 55-80%, который получают из серпентинитоасбестовой породы. Материал последовательно измельчают, гранулируют и обжигают при температуре 1150-1350С. Способ позволяет улучшить эксплуатационные характеристики керамических расклинивателей, а также расширить сырьевую базу для производства расклинивателей. 1 з.п. ф-лы, 1 табл.

Изобретение относится к области технологии формованных керамических изделий и может быть использовано для изготовления керамических расклинивателей нефтяных и газовых скважин.

Все известные заявителю керамические расклиниватели изготавливаются только из алюмосиликатного сырья с содержанием оксида алюминия свыше 28% (см., например, патент РФ №2163227 или ГОСТ 51761-2001). Керамических расклинивателей с высокой прочностью другого состава в научно-технической и патентной литературе не обнаружено.

Техническая задача, на решение которой направлено изобретение, - повышение эксплуатационных характеристик керамических расклинивателей, т.е. повышение прочности при одновременном снижении микротвердости. Эта задача при использовании известных технических решений принципиально невозможна, так как при повышении прочности необходимо повышать содержание оксида алюминия, при этом растет микротвердость (см., например, рекламу фирм-производителей “Carboceramics” и “Norton”, США). Кроме того, поставленная техническая задача направлена на удешевление керамических расклинивателей за счет расширения более дешевой сырьевой базы и снижение температуры спекания при их производстве.

Поставленная техническая задача достигается тем, что в способе изготовления керамических расклинивателей нефтяных скважин в качестве керамического материала берут материал на основе форстерита с содержанием последнего 55-80%, который последовательно измельчают, гранулируют и обжигают при температуре 1150-1350°С. Оптимальное количество форстерита в керамическом материале экспериментально установлено в пределах 55-80%. При содержании форстерита менее 55% резко снижается температурный интервал спекания, что приводит к образованию при обжиге “спеков” - слипшихся частиц, которые при просеве уходят в брак. При содержании форстерита более 80% возрастает температура спекания и происходит рекристаллизация керамики и ухудшаются механические свойства расклинивателей. Наряду с форстеритом керамический материал может содержать до 30% пироксена и стеклофазу в количестве до 25%. Пироксен и стеклофаза формируются в процессе спекания керамических расклинивателей и обеспечивают получение мелкокристаллической и малопористой структур керамического материала. Форстерит целесообразно получать из серпентинитоасбестовой породы. Измельчение форстерита производят до размера частиц менее 0,01 мм, а грануляцию - до фракции 0,2-1,8 мм. Перед грануляцией измельченный форстерит можно смешивать со спекающими и модифицирующими добавками, например, трепелом, диатомитом, опокой, гранитом, пластичной глиной и др.

Синтез форстерита можно осуществлять из оксидов магния и кремния, однако на практике гораздо более рационально использовать природные силикаты магния, например, преимущественно, серпентинит, асбест, серпентинитоасбестовую породу, а также дунит, оливинит, пироксенит, змеевик. Данные минералы являются породообразующими, повсеместно встречаются на территории России, а в ряде случаев представляют собой отходы техногенной переработки природного сырья.

По химическому составу серпентинитоасбестовая порода представляет собой водный силикат магния (Mg6[Si4О11/(OH)6]H2О) с примесями железа и кальция, причем состав серпентинитов и асбестов одного месторождения практически идентичен.

Особенностью предлагаемого способа является и то, что после термообработки серпентинитоасбестовая порода представляет собой форстерит (2MgOSiО2) с небольшим содержанием пироксенов - (Mg, Fe, Ca)ОSiО2 - и стекла.

В технологическом плане заявляемый способ довольно прост. Возможны два варианта измельчения материала - сухой и мокрый. При сухом способе измельчении серпентинитоасбестовую породу можно не обжигать. При мокром способе измельчения для получения шликеров с хорошей текучестью и низкой влажностью температуры обжига должна быть более 950С. В обоих случаях свойства керамики близки, и основным соединением, представленным в керамике, является форстерит. В технологический процесс могут быть введены спекающие и модифицирующие добавки, которые регулируют количество и состав пироксена и стеклофазы, однако их роль является второстепенной.

Заявляемый способ можно проиллюстрировать на следующих примерах:

Пример 1. Кусковой серпентинит (балласт для отсыпки железнодорожного полотна) обжигали при температуре 1070С, размалывали до удельной поверхности 6500 см2/г форстерита 55% с добавкой 7% трепела и 5% гранита, гранулировали и обжигали при температуре 1280С.

Пример 2. Циклонную пыль ОАО “Ураласбест” смешивали с 3% концентрата окиси цинка, (возгоны вторичной плавки) и 9% глины, размалывали до состояния частиц размером более 60 мкм менее 5% (форстерита 70%), гранулировали и обжигали при температуре 1260С.

Пример 3. Серпентинитовый щебень смешивали с 1% титанового концентрата, размалывали до удельной поверхности 7000 см2/г (форстерита 60%), гранулировали и обжигали при температуре 1240С.

Пример 4. Циклонную пыль ОАО “Ураласбест” обжигали при 700С, смешивали с 8% золы-уноса Рефтинской ГРЭС, размалывали до удельной поверхности 12000 cм2/г (форстерита 65%), гранулировали и обжигали при температуре 1270С.

Пример 5. Серпентинитовый щебень обжигали при температуре 1100С, размалывали до удельной поверхности 14500 cм2/г (форстерита 80%), гранулировали и обжигали при температуре 1320С.

Свойства получаемых по предлагаемому способу керамических расклинивателей в сравнении с известными приведены в таблице.

Свойства керамических расклинивателей (по ГОСТ Р51761-2001) приведены в таблице

Из таблицы видно, что заявляемые расклиниватели имеют более высокие эксплуатационные характеристики в сравнении с известными:

более высокую прочность расклинивателей, а это позволяет использовать их при более высоких давлениях гидроразрыва, что обеспечивает более высокую нефтеотдачу скважин после гидроразрыва;

более низкую микротвердость, что обеспечивает увеличение срока службы дорогостоящего оборудования для их закачки и гидроразрыва скважин;

более низкую температуру обжига керамических расклинивателей, что упрощает технологический процесс их изготовления.

В марте-апреле 2003 года ООО “ФОРЭС” произвело опытно-промышленные опробования предлагаемого способа. Общее количество изготовленной продукции 530 тонн. Опробование подтвердило эффективность предлагаемого способа, испытания керамических расклинивателей у потребителей показали их высокое качество.

Формула изобретения

1. Способ изготовления керамических расклинивателей нефтяных скважин, характеризующийся тем, что в качестве керамического материала берут материал на основе форстерита с содержанием последнего 55-80%, который последовательно измельчают, гранулируют и обжигают при температуре 1150-1350С.

2. Способ изготовления керамических расклинивателей, по п.1, характеризующийся тем, что форстерит получают из серпентинитоасбестовой породы.

QB4A Регистрация лицензионного договора на использование изобретения

Лицензиар(ы): Шмотьев Сергей Федорович, Плинер Сергей Юрьевич

Вид лицензии*: НИЛ

Лицензиат(ы): ООО "Технокерамика"

Договор № 20700 зарегистрирован 18.01.2005

Извещение опубликовано: 20.03.2005        БИ: 08/2005

* ИЛ - исключительная лицензия        НИЛ - неисключительная лицензия




 

Похожие патенты:

Изобретение относится к области технической керамики и огнеупоров и может быть использовано для изготовления изделий, применяемых в электротехнике, машиностроении, химической и металлургической отраслях промышленности и других отраслях

Изобретение относится к области производства огнеупорных гранулированных материалов, предназначенных для использования в качестве расклинивающего агента при добыче нефти и газа способом гидравлического разрыва пласта

Изобретение относится к области производства и переработки ядерного топлива

Изобретение относится к области формования пластифицированной порошковой смеси для получения изделия сотовой структуры

Изобретение относится к технологии формования керамических изделий различного назначения из водных шликеров и направлено на упрощение технологии электрофоретического формования путем замены сложных в изготовлении формообразующих металлических матриц катода на гипсовые
Изобретение относится к технологии производства изделий из кварцевой керамики различного назначения и позволяет получать крупногабаритные изделия с высокими прочностными характеристиками и однородностью материала

Изобретение относится к производству огнеупоров и предназначено для изготовления огнеупорных изделий сложной формы, крупногабаритных блоков и монолитных футеровок тепловых и металлургических агрегатов

Изобретение относится к области получения огнеупорных строительных материалов на основе корунда, работающих в области температур до 1750oС, и может быть использовано при изготовлении огнеупоров, бетонов, штучных изделий, набивных и торкетмасс

Изобретение относится к области теплозащитных материалов, в частности к способу получения высокотермостойкого волокна на основе оксида алюминия, выдерживающего длительную эксплуатацию при 1600oС

Изобретение относится к области технологии формованных керамических изделий и может быть использовано для изготовления керамических расклинивателей нефтяных и газовых скважин

Изобретение относится к производству пенокерамики для рафинирования металлов, очистки вод и промышленных газов, полной очистки бензина, дизельного топлива и выхлопных газов, уменьшения расхода топлива

Изобретение относится к черной металлургии, в частности к производству безобжиговых огнеупоров для разливки стали, плит для шиберных затворов сталеразливочных ковшей, сталеразливочных стаканов-дозаторов, коллекторов, гнездовых блоков, продувочных фурм, труб защиты струи металла от окисления

Изобретение относится к огнеупорной промышленности и может быть использовано для производства магнезиально-силикатных огнеупоров, применяемых в футеровках нагревательных, обжиговых печей и других тепловых агрегатов

Изобретение относится к огнеупорной промышленности и может быть использовано для магнезиальносиликатных огнеупоров (МСО), предназначенных для футеровки (Ф) тепловых агрегатов, в частности для осуществления промежуточных ремонтов зоны спекания вращающихся печей цементной промышленности

Изобретение относится к огнеупорной промышленности, а именно к производству магнезиальносиликатных безобжиговых и обожженных огнеупоров, используемых в футеровках конвертеров, в агрегатах внепечной обработки стали, сталеразливочных ковшах и печах цветной металлургии

Изобретение относится к огнеупорной промышленности, а именно к производству углеродистых огнеупоров с периклазсодержащим заполнителем, используемых для футеровки металлургических агрегатов

Изобретение относится к строительным материалам и может быть использовано при изготовлении штучных изделий, бетонов, набивных и торкретмасс

Изобретение относится к строительным материалам и может быть использовано при изготовлении бетонов, штучных изделий, набивных и торкретмасс
Шихта // 2306299
Изобретение относится к составам шихты, которая может быть использована в производстве электротехнических керамических изделий
Наверх