Способ извлечения непрореагировавшего аммиака из вытекающего из реактора потока

 

Изобретение относится к усовершенствованному способу восстановления и регенерации непрореагировавшего аммиака из вытекающего потока, содержащего акрилонитрил или метакрилонитрил, полученного из зоны реакции, где кислород, аммиак и углеводород, выбранный из группы, содержащей пропан и изобутан, взаимодействуют в реакторе в присутствии кипящего слоя катализатора аммоксидирования при повышенной температуре для получения соответствующего ненасыщенного нитрила охлаждением вытекающего потока из реактора с кипящим слоем, содержащим соответствующий нитрил и непрореагировавший аммиак, с первым водным раствором фосфата аммония, в котором отношение ионов аммония (NH+4) к фосфат-ионам (PO-34) составляет от приблизительно 0,7 до приблизительно 1,3, для абсорбции по существу всего непрореагировавшего аммиака, присутствующего в вытекающем потоке реактора для образования второго водного раствора фосфата аммония, более богатого ионами аммония, чем первый раствор, нагревание второго водного раствора фосфата аммония до повышенной температуры, достаточной для уменьшения количества ионов аммония во втором растворе до по существу такого же уровня присутствующих в первом растворе с образованием парообразного потока, содержащего аммиак, и возвращение потока пара, содержащего аммиак, в реактор с кипящим слоем. Способ позволяет избежать образования отходов, содержащих соль аммония, достигается полное улавливание акролеина, более низкое содержание органического углерода и полимеров в органических отстоях. 17 з.п.ф-лы, 2 ил.

Область техники

Настоящее изобретение относится к способу извлечения и регенерации аммиака, содержащегося в вытекающем потоке, полученном из зоны реакции, где аммиак и кислород реагируют с парафином до получения соответствующего алифатического нитрила. В частности, настоящее изобретение относится к восстановлению и регенерации непрореагировавшего аммиака, содержащегося в вытекающем потоке из зоны реакции, причем аммиак и кислород реагируют с (1) пропаном до получения акрилонитрила или (2) изобутаном до получения метакрилонитрила.

Каждый из патентов США 3936360 и 3649179 указывает способ для получения акрилонитрила, используя пропилен, кислород и аммиак в качестве реагентов. Эти газы проходят через катализатор в реакторе с флюидизированным (кипящим) слоем до получения акрилонитрила, который проходит от реактора до секции восстановления и очистки. В этой реакции также присутствует непрореагировавший аммиак, который обычно удаляется из процесса обработкой кислотой в колонне резкого охлаждения. Патент '179 раскрывает, что охлаждающей кислотой может быть либо серная, соляная, фосфорная, либо азотная кислота. Патент '360 раскрывает использование серной кислоты при резком охлаждении для удаления непрореагировавшего аммиака. В производстве акрилонитрила, использующем пропилен в качестве углеводородного сырья, в предпочтительных воплощениях безусловно используют серную кислоту с конечным образованием сульфата аммония. Обычно сульфат аммония либо восстанавливается и продается как сопродукт (удобрение), либо может быть скомбинирован с другими высокомолекулярными органическими веществами, полученными в процессе и тщательно отстоенными с дальнейшим их удалением, чтобы не засорять окружающую среду.

Патент Великобритании 222587 посвящен извлечению аммония из аммиаксодержащей газовой смеси, используя водный раствор фосфорной кислоты, водный раствор кислого ортофосфата аммония ((NН42РO4) или их смесей. Аммоний извлекают посредством теплового разложения и растворения получающегося остатка в воде для регенерации аммонийсодержащего восстановленного фосфатного раствора. Этот способ предназначен для извлечения аммиака из угольного газа или коксовых газов при температурах от 50 до 70С.

Патенты США 2797148 и 3718731 посвящены извлечению аммония из потока процесса, используемого в производстве HCN. Для этого используют раствор фосфата аммония для улавливания аммония и затем применяют отгонку с помощью пара для регенерации аммиака из раствора фосфата аммония. Обычно способ реализуют путем контактирования аммиаксодержащего газа с содержанием от 25 до 35% по весу раствора фосфата аммония, имеющего рН около 6, при температуре от 55 до 90С. Регенерация аммиака происходит посредством контактирования получающегося раствора фосфата аммония с паром. Способы в каждом из этих патентов раскрывают, что отношение ион аммония/фосфат-ион составляет, по меньшей мере, 1.2 или выше.

Способ согласно настоящему изобретению имеет ряд преимуществ по сравнению с предшествующей практикой, применяемой в аммоксидировании пропилена, так как при этом избегают образования потока отходов, содержащего соль аммония, который должен быть либо (1) обработан для восстановления соли аммония, либо (2) использован безопасным для окружающей среды образом. Предпочтительно, способ согласно настоящему изобретению приводит к извлечению аммония и регенерации охлаждающего раствора фосфата аммония, подвергая охлаждающий раствор повышенным температуре и давлению для разложения соли фосфата аммония. Система охлаждения настоящего изобретения приводит к дополнительным неожиданным преимуществам при аммоксидировании пропана по сравнению с пропиленовым аммоксидированием до акрилонитрила. Среди этих преимуществ такие, как: (1) полное улавливание побочного продукта акролеина, что улучшает эффективность извлечения продукта с помощью минимизации потерь продукта посредством, например, реакции акролеина с HCN при разделении и извлечении продукта, (2) более низкое ТОС (общее содержание органического углерода) в охлаждающих отстоях, (3) более высокое процентное содержание органических веществ, находящихся в охлаждающих отстоях, присутствующих в качестве отгоняемых/извлекаемых мономеров вместо неизвлекаемых полимеров отходов и (4) возможность использования менее жесткой обработки органических отходов (например, влажного окисления) из-за присутствия более низких ТОС и полимеров в растворе охлаждающих отстоев. Дополнительным значительным преимуществом способа настоящего изобретения является то, что все водные потоки отходов могут быть легко управляемыми стандартными процессами биообработки в отличие от отработанных потоков, связанных с аммоксидированием пропилена для получения акрилонитрила.

Сущность изобретения

Основной целью настоящего изобретения является извлечение или регенерация аммиака, содержащегося в вытекающем из зоны реактора потоке, где аммиак, кислород и пропан/изобутан взаимодействуют для получения акрилонитрила/метакрилонитрила.

Другой целью настоящего изобретения является предотвращение необходимости удаления избытка аммиака, который является результатом аммоксидирования пропана в акрилонитрил.

Еще одной целью настоящего изобретения является извлечение аммиака из реакции аммоксидирования пропана без любой значительной потери аммиака.

Другие цели так же, как другие аспекты, особенности и преимущества настоящего изобретения, станут очевидными из рассмотрения описания с сопроводительными чертежами и формулы изобретения.

Для достижения вышеизложенных целей и в соответствии с целью настоящего изобретения, воплощенного и полностью раскрытого в описании, способ извлечения непрореагировавшего аммиака из потока, полученного из реакторной зоны, где кислород, аммиак и углеводород, выбранный из группы, содержащей пропан и изобутан, взаимодействуют в присутствии катализатора аммоксидирования при повышенной температуре для получения соответствующего нитрила, включает (1) резкое охлаждение вытекающего из реактора с кипящим слоем потока, содержащего соответствующий нитрил и непрореагировавший аммиак, первым охлаждающим водным раствором фосфата аммония, в котором отношение ионов аммония (NH+4) к фосфат-ионам (РO-34) составляет по меньшей мере около 0.7, но не более чем приблизительно 1.3, посредством этого абсорбируя аммиак до образования второго водного раствора фосфата аммония, более богатого ионами аммония (NH+4), чем первый раствор, (2) нагревание второго раствора до повышенной температуры для уменьшения количества ионов аммония во втором растворе обратно, по существу, до такого же уровня, как в первом растворе, и образование потока пара, содержащего аммиак, возвращение указанного потока пара, содержащего аммиак, к зоне реакции аммоксидирования.

В предпочтительном воплощении способа согласно настоящему изобретению второй водный раствор фосфата аммония обрабатывается посредством отгоняющего газа для удаления, по существу, всего акрилонитрила и других полезных сопродуктов из второго раствора перед нагреванием раствора для уменьшения содержания NH+ 4иона.

В другом предпочтительном варианте воплощения настоящего изобретения газ, содержащий акрилонитрил, возвращается для извлечения и очистки акрилонитрила.

В другом предпочтительном варианте воплощения настоящего изобретения второй раствор после отгонки и удаления аммиака перемещается к реактору окисления в атмосфере влажного кислорода, посредством чего раствор подвергается упомянутому окислению при повышенных температуре и давлении для удаления любых высокомолекулярных органических соединений, содержащихся в охлаждающем растворе.

В еще одном варианте воплощения настоящего изобретения второй раствор после удаления аммиака перемещается к испарителю для удаления избытка воды из раствора фосфата аммония, который затем возвращается для использования в охлаждении.

Предпочтительно, температура первого раствора находится между 40 и 80С, особенно предпочтительно между 50 и 65С.

Обычно первый охлаждающий раствор имеет отношение аммоний/фосфат между 0.7 и около 1.3, предпочтительно между около 0.9 до около 1.2, наиболее предпочтительно между около 1.0 и около 1.2. Результирующее значение рН первого охлаждающего раствора находится между 2.8 и приблизительно 6. Концентрация фосфат-ионов в первом охлаждающем растворе может составлять до 40% по весу, предпочтительно до около 35% по весу.

Краткое описание чертежей

Фиг.1 - это технологическая схема предпочтительного воплощения настоящего изобретения.

Фиг.2 - это технологическая схема другого предпочтительного воплощения настоящего изобретения.

Подробное описание изобретения

Ниже приводится подробное описание предпочтительных вариантов воплощения настоящего изобретения.

Настоящее изобретение направлено на создание способа резкого охлаждения вытекающего потока, полученного из реакционной зоны аммоксидирования пропана. Предпочтительно, реакция протекает в реакторе с флюидизированным (кипящим) слоем, хотя другие типы реакторов, такие как реакторы с транспортной линией, рассматриваются как подходящие в практике изобретения. Условия реакции аммоксидирования пропана в кипящем слое и флюидизированный слой катализатора, полезные при аммоксидировании пропана, известны в технике как доказанные патентом США 4746641, предназначены для дополнения настоящей заявки и упоминаются здесь в качестве ссылки. Новый способ согласно настоящему изобретению содержит резкое охлаждение реакторного вытекающего потока, полученного при взаимодействии аммиака, кислорода и пропана в зоне реакции (например, реакторе с кипящим слоем) для получения акрилонитрила первым водным раствором фосфата аммония, имеющим отношение ионов аммония к фосфат-ионам по меньшей мере 0.7, но не более чем 1.3, посредством этого абсорбируя аммиак для обогащения ионами аммония второго раствора фосфата аммония по сравнению с первым раствором, нагревание второго раствора до повышенной температуры для уменьшения содержания ионов аммония во втором растворе обратно до, по существу, такого же содержания иона аммония, как в первом растворе, и образование потока пара, содержащего аммиак и воду, увеличение молярной концентрации аммиака в этом потоке пара и возвращение потока пара, содержащего аммиак, к реактору с кипящим слоем.

Предпочтительно, отношение ион аммония/фосфат-ион находится между приблизительно 0.9 и приблизительно 1.2, особенно предпочтительно составляет около от 1.0 до 1.2. Температура первого охлаждающего раствора составляет обычно между от 40 до 80С, предпочтительно между около от 50 до 65С, особенно предпочтительно между от 55 до 60С.

pН первого (исходного) охлаждающего раствора будет поддерживаться между от приблизительно 2.8 до не выше чем 6.0, предпочтительно между от 2.8 до приблизительно 5.8.

Предпочтительно, исходный охлаждающий раствор содержит смесь первичный фосфат аммония/водный раствор фосфорной кислоты (90% первичный фосфат аммония - 10% Н3РO4), хотя слабый раствор водного раствора первичного фосфата аммония также рассматривается как подходящий в практике настоящего изобретения. Когда используется водный раствор первичного фосфата аммония, присутствующий в вытекающем из реактора потоке, непрореагировавший аммоний абсорбируется для преобразования первичного фосфата аммония во вторичный фосфат.

В течение процедуры резкого охлаждения продукты (акрилонитрил, ацетонитрил и HCN) удаляются в качестве верхних продуктов и в основном не содержат аммиака. Остаток охлаждающего раствора, содержащий вторичный фосфат аммония, также содержит остаточные мономеры (например, акрилонитрил) в малых количествах. Эти мономеры предпочтительно подвергаются отгонке и возвращаются в охлаждающий раствор для дальнейшего восстановления и очистки. Обычные отгоняющие газы для удаления остаточных мономеров из охлаждающих остатков содержат пропан, азот, диоксид углерода и монооксид углерода или их смесь.

Охлаждающие остаточные растворы, очищенные от полезных мономеров, затем регенерируются при повышенных температуре и давлении для преобразования вторичного фосфата аммония обратно в первичный фосфат аммония с высвобождением аммиака. Аммиак улавливается, как поток пара, который содержит воду. Этот насыщенный аммиаком поток пара нагревается для удаления почти всей воды, и аммиак затем возвращается обратно к реактору. Первичный фосфат аммония восстанавливается и возвращается обратно в колонну резкого охлаждения.

В следующем предпочтительном варианте воплощения настоящего изобретения отогнанный охлаждающий остаток, содержащий вторичный фосфат аммония, проходит через реактор влажного окисления, где он обрабатывается при обычных условиях влажного окисления для удаления любых полимеров, образованных в течение процесса аммоксидирования.

В другом предпочтительном варианте воплощения настоящего изобретения отогнанный охлаждающий остаток, содержащий неизвлекаемые мономеры и вторичный фосфат аммония, раздельно обрабатываются в разлагающей фосфат установке, которая отделяет вторичный фосфат аммония от остаточных мономеров. Вторичный фосфат затем регенерируется обратно до первичного фосфата аммония на сепараторной установке, в то время как оставшиеся полимеры перемещаются к установке влажного окисления для влажного окисления при обычных температуре и давлении для производства безвредных побочных продуктов, таких как диоксид углерода и вода.

На фиг.1 и 2 изображены предпочтительные воплощения способа согласно настоящему изобретению применительно к аммоксидированию пропана.

На фиг.1 реакторный вытекающий поток, полученный непосредственно реакцией пропана, аммиака и кислорода в реакторе с кипящим слоем (не показан) через флюидизированный катализатор аммоксидирования, проходит по трубопроводу 1 в охлаждающую колонну 3. В охлаждающей колонне 3 реакторный вытекающий поток, содержащий полученный акрилонитрил и непрореагировавший аммиак, контактирует с обедненным аммонийно-фосфатным охлаждающим раствором, который адсорбирует непрореагировавший аммиак из вытекающего потока, получая свободный от аммиака верхний поток, содержащий неочищенный акрилонитрил. Неочищенный акрилонитрил проходит сверху по трубопроводу 5 в стандартные секции восстановления и очистки (не показаны) для последующего извлечения коммерчески чистого акрилонитрила, неочищенного ацетонитрила и цианида водорода. Примеры процедур стандартного восстановления и очистки могут быть найдены в патенте США 3936360, включенного в описание в качестве ссылки. Остатки охлаждения выходят из колонны 3 охлаждения по трубопроводу 7 и вводятся в охлаждающую отгоночную секцию 9. Отгоняющий газ, содержащий возвращенный поток, содержащий смесь пропана, монооксида углерода, диоксида углерода и азота, проходит через трубопровод 13 в отгоночную секцию 9 для удаления любого остаточного акрилонитрила, ацетонитрила или цианида водорода, содержащихся в охлаждающих остатках. Отбираемый сверху отгоняющий газ, поступающий в отгоночную секцию 9 по трубопроводу 13, содержащий эти остаточные мономеры, возвращается обратно в колонну 3 охлаждения по трубопроводу 11 для дальнейшего восстановления (извлечения) полезных продуктов. Отогнанные охлажденные остатки проходят из отгоночной секции 9 по трубопроводу 15 в реактор 17 влажного окисления, где кислород проходит через трубопровод 25, и имеет место стандартное каталитическое влажное окисление для удаления нежелательных примесей, таких как полимеры. В дополнение, вторичный фосфат аммония, содержащийся в охлаждающих остатках отгоночной секции, нагревается для высвобождения аммиака и преобразования вторичного фосфата аммония в растворе в первичный фосфат аммония. Раствор первичного фосфата аммония проходит из реактора 17 по трубопроводу 27 в испаритель 19, где избыток воды удаляется из раствора. Этот избыток воды проходит от испарителя 19 по трубопроводу 21 для рециркулирования или ликвидации. Слабоконцентрированный раствор первичного фосфата аммония проходит из испарителя 19 через трубопровод 23 для возвращения в колонну 3 охлаждения. Разложение вторичного фосфата аммония проходит в реакторе 17 влажного окисления при тепловой обработке в присутствии кислорода и затем из реактора 17 по трубопроводу 29 возвращается непосредственно в реактор с флюидизированным слоем (не показан).

Типовые условия влажного окисления используются для разложения нежелательных полимеров, полученных в течение процесса. Обычными катализаторами для влажного окисления являются растворимые соли меди и железа, оксиды меди, цинка, марганца, церия и благородные металлы, хорошо известные ранее. Смотри, например, Ind.. Eng. Chem. Res., 1995, т. 34, с.2-48, включенные в качестве ссылок. Реакция влажного окисления рассчитана на нормальное протекание. Обычно влажное окисление проходит при давлении между приблизительно от 42,19 до 210,9 кг/см2 и температуре от 200 до 650С.

Со ссылкой на фиг.2 описывается другое предпочтительное воплощение настоящего изобретения. Способ, показанный на фиг.2, в основном тот же, что и на фиг.1, за исключением того, что разложение фосфата имеет место в отдельной установке с последующим влажным окислением в другой установке. Реакторный вытекающий поток, полученный непосредственным аммоксидированием пропана, кислорода и аммиака в реакторе с флюидизированным слоем (не показан), проходит через реактор с флюидизированным слоем по трубопроводу 2 в охладитель 4. Реакторный вытекающий поток, содержащий неочищенный акрилонитрил и непрореагировавший аммиак, контактирует в охладителе 4 с водным раствором первичного фосфата аммония, который поступает в охладитель 4 через трубопровод 40. Раствор фосфата удаляет непрореагировавший аммиак из реакторного вытекающего потока, позволяя не содержащим аммиак продуктам (неочищенный акрилонитрил) проходить вверх из охладителя 4 по трубопроводу 6. Неочищенный акрилонитрил, проходящий сверху по трубопроводу 6, направляется к стандартной секции восстановления и очистки для извлечения коммерчески чистого акрилонитрила, неочищенного ацетонитрила и HCN. Остатки охлаждения проходят через охладитель 4 по трубопроводу 8 в отгоночную секцию 10 охлаждения, где отгоняющий газ (имеющий тот же состав, какой описан выше) вводится малыми порциями в нижнюю часть отгоночной секции 10 и проходит вверх через остатки охлаждения для отгонки охлаждающих отстоев от любых полезных мономеров, присутствующих в отстоях, таких как акрилонитрил, ацетонитрил и цианид водорода. Газ отгоночной секции, содержащий полезные мономеры, затем выходит из отгоночной секции 10 сверху по трубопроводу 12 в охладитель 4 для дальнейшего восстановления и очистки. Отогнанные охлаждающие отстои перемещаются из отгоночной секции 10 по трубопроводу 16 к секции 18 разложения фосфатов. В секции 18 разложения фосфатов вторичный фосфат аммония, присутствующий в отогнанном охлаждающем отстое, преобразуется в свободный аммоний и первичный фосфат аммония путем нагревания до повышенной температуры (от 100 до 300С). Обычно давление находится между от 1 до 5 атмосфер (от атмосферного давления до 5,273 кг/см2). Кислород может присутствовать, но не требуется. Результирующий раствор первичного фосфата аммония проходит из секции 18 разложения по трубопроводу 34 для возвращения через трубопровод 40 в охладитель 4. Свободный аммиак, образованный в течение преобразования фосфата в реакторе 18, проходит в секцию 22 ректификации аммиака, где свободный аммиак очищается и поступает на секцию 28 отгонки аммиака по трубопроводу 26 для того, чтобы извлечь аммиак для возвращения в реактор (не показан) для получения акрилонитрила. Вода извлекается из секции 28 отгонки аммиака и проходит по трубопроводу 32 для возвращения или удаления. Слабый раствор первичного фосфата аммония, проходящий из секции 18 разложения по трубопроводу 34, может быть послан через секцию 38 влажного окисления по трубопроводу 36 для удаления полимеров и преобразования этих нежелательных веществ в безвредные побочные продукты, такие как водород, монооксид углерода и диоксид углерода. Как описано ранее, влажное окисление может проводиться при известных стандартных условиях.

Несмотря на то, что изобретение было раскрыто применительно к особенностям его воплощения, очевидно, что много альтернатив, модификаций и вариантов будут очевидны для специалистов из вышеуказанного описания. Соответственно, оно предназначено для охвата всех таких альтернатив и модификаций в свете прилагаемой формулы изобретения.

Формула изобретения

1. Способ восстановления непрореагировавшего аммиака из вытекающего потока, полученного из зоны реакции, где кислород, аммиак и углеводород, выбранный из группы, содержащей пропан и изобутан, взаимодействуют в реакторе в присутствии кипящего слоя катализатора аммоксидирования при повышенной температуре для получения соответствующего ненасыщенного нитрила охлаждением вытекающего потока из реактора с кипящим слоем, содержащим соответствующий нитрил и непрореагировавший аммиак, с первым водным раствором фосфата аммония, в котором отношение ионов аммония (NH+4) к фосфат-ионам (РO-34) составляет приблизительно 0,7 - 1,3, для абсорбции, по существу, всего непрореагировавшего аммиака, присутствующего в вытекающем потоке реактора для образования второго водного раствора фосфата аммония, более богатого ионами аммония, чем первый раствор, нагревание второго водного раствора фосфата аммония до повышенной температуры, достаточной для уменьшения количества ионов аммония во втором растворе до, по существу, такого же уровня присутствующих в первом растворе, с образованием парообразного потока, содержащего аммиак, и возвращение потока пара, содержащего аммиак, в реактор с кипящим слоем.

2. Способ по п.1, отличающийся тем, что углеводородом является пропан.

3. Способ по п.1, отличающийся тем, что отношение иона аммония к иону фосфата в первом растворе находится приблизительно в пределах 0,9 - 1,2.

4. Способ по п.3, отличающийся тем, что отношение иона аммония к иону фосфата в первом растворе находится приблизительно в пределах 1,0 - 1,2.

5. Способ по п.1, отличающийся тем, что отгоняющий газ проходит через второй водный раствор фосфата аммония для удаления, по существу, всего остаточного нитрила из второго раствора перед нагреванием раствора до повышенной температуры.

6. Способ по п.5, отличающийся тем, что углеводородом является пропан.

7. Способ по п.1, отличающийся тем, что второй раствор, содержащий в основном тот же уровень ионов аммония, который присутствует в первом растворе, возвращается для использования на этап охлаждения.

8. Способ по п.7, отличающийся тем, что второй раствор перед возвращением подвергается окислению в атмосфере влажного кислорода для удаления любых нежелательных примесей.

9. Способ по п.5, отличающийся тем, что нагревание второго раствора до повышенной температуры осуществляют в реакторе окисления в атмосфере влажного кислорода для одновременного удаления нежелательных примесей из второго раствора и уменьшения концентрации иона аммония во втором растворе до в основном того же уровня присутствия, что и в первом растворе.

10. Способ по п.5, отличающийся тем, что отношение иона аммония к иону фосфата в первом растворе находится в пределах приблизительно 0,9 - 1,2.

11. Способ по п.10, отличающийся тем, что отношение иона аммония к иону фосфата в первом растворе находится в пределах приблизительно 1,0 - 1,2.

12. Способ по п.1, отличающийся тем, что рН первого раствора находится в пределах приблизительно 2,8 - 6,0.

13. Способ по п.12, отличающийся тем, что рН первого раствора находится в пределах приблизительно 2,8 - 5,8.

14. Способ по п.5, отличающийся тем, что рН первого раствора находится в пределах приблизительно 2,8 - 6,0.

15. Способ по п.14, отличающийся тем, что рН первого раствора находится в пределах приблизительно 2,8 - 5,8.

16. Способ по п.1, отличающийся тем, что температура первого раствора составляет от 40 до 80С.

17. Способ по п.1, отличающийся тем, что первый раствор содержит водный раствор, содержащий первичный фосфат аммония и фосфорную кислоту.

18. Способ по п.5, отличающийся тем, что первый раствор содержит водный раствор, содержащий первичный фосфат аммония и фосфорную кислоту.

РИСУНКИРисунок 1, Рисунок 2

PD4A - Изменение наименования обладателя патента СССР или патента Российской Федерации на изобретение

(73) Новое наименование патентообладателя:ИНЕОС ЮЭСЭЙ ЛЛК (US)

Адрес для переписки:103735, Москва, ул. Ильинка, 5/2, ООО "Союзпатент"

Извещение опубликовано: 27.10.2008        БИ: 30/2008



 

Похожие патенты:

Изобретение относится к способу получения олефин-ненасыщенных нитрилов реакцией низших алканов или алкенов с кислородом и аммиаком в газовой фазе в присутствии водяного пара и подходящего катализатора при повышенной температуре в реакторе аммоксидирования с образованием на выходе горячего газообразного потока, включающего нитрил, непрореагировавшие реагенты и побочные продукты, с последующим пропусканием горячего газообразного потока через обратный струйный скруббер, в котором горячий газообразный поток быстро охлаждают в результате его контакта с охлаждающей жидкостью, инжектируемой противотоком к направлению движения указанного газообразного потока, с удалением аммиака, при этом газообразный поток пропускают через обратный струйный скруббер с такой приведенной скоростью, которая позволяет изменить на обратное направление течения инжектируемой охлаждающей жидкости с испарением части инжектируемой охлаждающей жидкости

Изобретение относится к усовершенствованию каталитического способа аммоксидирования низших парафинов для получения ненасыщенных мононитрилов, таких как акрилонитрил и метакрилонитрил

Изобретение относится к способу выделения и очистки олефинненасыщенного нитрила, такого как акрилонитрил
Изобретение относится к усовершенствованному способу извлечения акрилонитрила или метакрилонитрила, который используется в производстве акрилонитрила или метакрилонитрила

Изобретение относится к катализаторам окисления, в частности к катализатору для окислительного аммонолиза этиленненасыщенных соединений на основе окислов металлов, способу его получения и способу окислительного аммонолиза аммонолиза этиленненасыщенных соединений

Изобретение относится к усовершенствованному способсу, позволяющему практически исключить образование нитрида на подающих трубопроводах в реакторах с псевдоожиженным слоем катализатора, используемых в производстве ненасыщенных нитрилов из соответствующих олефинов, NH3 и кислорода, согласно способу температуру аммиака внутри трубопровода поддерживают на уровне ниже температуры его диссоциации и/или температуру внутренней поверхности трубопровода поддерживают на уровне ниже температуры, при которой любой одноатомный азот может взаимодействовать с трубопроводом для образования нитрида

Изобретение относится к способу каталитического парофазного аммоксидирования С3-С5 олефинов для получения , - ненасыщенных мононитрилов и HCN, а более точно, изобретение относится к способу каталитического парофазного аммоксидирования (1) пропилена для получения акрилонитрила и HCN и (2) изобутилена для получения метакрилонитрила и HCN

Изобретение относится к способу обработки сырого ацетонитрила, содержащего акрилонитрил в качестве примеси, включающий подачу сырого ацетонитрила, содержащего акрилонитрил в качестве примеси и воду, в верхнюю часть дистилляционной колонны, дистилляцию сырого ацетонитрила в присутствии воды в течение периода времени, достаточного для испарения по существу всех акрилонитриловых примесей в присутствии воды и их удаления с верхним потоком, выходящим из дистилляционной колонны, и регенерацию сырого ацетонитрила, по существу свободного от акрилонитриловых примесей, из нижней части дистилляционной колонны

Изобретение относится к способу выделения и очистки олефинненасыщенного нитрила, такого как акрилонитрил
Изобретение относится к усовершенствованному способу извлечения акрилонитрила или метакрилонитрила, который используется в производстве акрилонитрила или метакрилонитрила
Изобретение относится к очистке ацетонитрила посредством процесса, основанного на адсорбции

Изобретение относится к способам очистки 4-(н-алкокси-С3-С5)-4-циано-1,1'-бифенилов жидких кристаллических компонентов для композиций, применяющихся в микроэлектронике
Наверх