Способ определения о- и м-нитротолуолов в воздухе



 

Изобретение относится к аналитической химии органических соединений и может быть применено для детектирования о- и м-нитротолуолов в воздухе рабочей зоны предприятий парфюмерной, мыловаренной и анилинокрасочной промышленности. В способе определения о- и м-нитротолуолов в воздухе, включающем подготовку пробы, модификацию пьезосенсора активным сорбентом, пропускание через ячейку детектирования пробы и газа-носителя, регистрацию сигнала пьезосенсора, в качестве активного сорбента применяют тритон Х-100 с массой 10-12 мкг, в качестве газа-носителя используют воздух, который пропускают через ячейку детектирования перед пропусканием через нее пробы, а расход и время пропускания в обоих случаях составляют, соответственно, 45-55 см3/мин и 2-3 мин. Способ позволяет: существенно упростить аппаратурное оформление анализа; снизить продолжительность анализа и модификации; сокращается количество используемых в анализе реагентов; снижается температура определения со 210 до 20-25С. 2 табл.

Изобретение относится к аналитической химии органических соединений и может быть применено для детектирования о- и м-нитротолуолов в воздухе рабочей зоны предприятий парфюмерной, мыловаренной и анилинокрасочной промышленности.

Известен газохроматографический способ определения о- и м-нитротолуолов в воздухе [Е.Г.Иванюк, Ю.А.Колиевская. Газохромато-графическое определение нитротолуола и толуидина в воздухе производственных помещений // Завод, лаб. - 1977. - Т. 43, №2. - С. 157-158].

Определение о- и м-нитротолуолов проводят на колонке длиной 1 м, заполненной динохромом П с нанесенной смесью жидких фаз по 1% каждой: апиезона Z, бентона - 34 и ПФМС-4. Расход газа-носителя (азот) 30 мл/мин, водорода - 60 мл/мин, воздуха - 600 мл/мин. Температура колонки 164С, испарителя 250С. продолжительность анализа >10 мин. Для проведения анализа отбирали 20 л воздуха, пропускали со скоростью 1 л/мин через пробоотборную трубку, заполненную силикагелем КСК с диаметром зерна 0,5 мм. Пробу вымывали 2,5 мл этилового спирта.

Наиболее близким по технической сущности и достигаемому эффекту является способ определения о- и м-нитротолуолов в воздухе с применением пьезосенсора (AT-срез, номинальная частота колебаний 9 МГц), модифицированного пленкой фталоцианина меди (II), полученной вакуумным напылением на электроды.

Определение о- и м-нитротолуолов основано на предварительном переводе определяемых веществ в NO2. Выделившийся NO2 затем по газопроводу поступает в ячейку детектирования, в которой расположен пьезосенсор. Температура ячейки детектирования 210С. Газ-носитель - азот.

Для устранения влияния влажности перед ячейкой детектирования расположена предколонка, заполненная молекулярным ситом [Т.A.Rocha-Santos, M.T.Gomes, А.С.Duarte, J.P.Oliveira A quartz crystal microbalance sensor for determination of nitroaromatics in landfill gas // Talanta. - 2000. - V. 51. - P. 1149-1153.].

Недостатком прототипа является сложность, значительная продолжительность и высокая температура анализа, длительность модификации пьезосенсора.

Технической задачей изобретения является упрощение аппаратурного оформления, снижение температуры и продолжительности анализа.

Поставленная задача достигается тем, что в способе определения о- и м-нитротолуолов в воздухе, включающем подготовку пробы, модификацию пьезосенсора активным сорбентом, пропускание через ячейку детектирования пробы и газа-носителя, регистрацию сигнала пьезосенсора, новым является, что в качестве активного сорбента применяют тритон Х-100 с массой 10-12 мкг, в качестве газа-носителя используют воздух, который пропускают через ячейку детектирования перед пропусканием через нее пробы, а расход и время пропускания в обоих случаях составляют, соответственно, 45-55 см3/мин и 2-3 мин.

Технический результат заключается в значительном упрощении аппаратурного оформления, повышении экспрессности анализа и сокращении количества используемых реагентов.

Предельно допустимая концентрация о- и м-нитротолуолов в воздухе рабочей зоны 0,001 г/м3.

Способ осуществляется по следующей методике

Модификация сенсора. В качестве модификатора пьезосенсора применяли предварительно растворенный в ацетоне Тритон Х-100 (эфир полиэтиленгликоля, представляет собой n-(1,1,3,3-тетраметил) фениловый эфир полиэтиленгликоля) [Пецев Н., Коцев Н. Справочник по газовой хроматографии. - М.: Мир, 1987. - 260 с.].

На оба электрода (диаметр 5 мм, площадь 0,28 см2) пьезосенсора (срез AT, плотность кварца 2600 кг/м3) с собственной частотой 8 МГц наносили микрошприцем тритон Х-100, растворенный в ацетоне в количестве 10-12 мкг (концентрация 1 мг/см3). Затем помещали в сушильный шкаф при 60С (испарение растворителя).

Ход определения. В реакционную емкость ячейки детектирования помещали предварительно модифицированный пьезосенсор на основе объемно-акустических волн. Перед началом работы в “рубашку” через патрубки из термостата подавали воду для вывода температуры ячейки на заданный уровень. Пьезосенсор выдерживали в потоке осушенного лабораторного воздуха несколько минут до получения стабильного аналитического сигнала и измеряли показания сенсора, прокачивали микрокомпрессором вначале газ-носитель (воздух) при расходе 45-55 см3/мин в течение 2-3 мин и затем анализируемую пробу воздуха, содержащую о- и м-нитротолуолы, также при расходе 45-55 см3/мин в течение 2-3 мин.

Изменения резонансной частоты сенсора (разность частот колебаний пьезосенсора в воздухе и в анализируемой газовой пробе) вычисляли по формуле Зауербрея [Sauerbrey G.G. Verwendung von schwingquarzen zur wagung dunner schlichten und zur microwagung // Z. Phys. - 1959. - Bd. 155. - S. 206-221].

Для удаления пробы из реакционной емкости и регенерации пьезосенсора патрубок открывали и подавали осушенный лабораторный воздух до выхода сигнала сенсора на начальный уровень (до ввода пробы). После этого в ячейке проводили следующее измерение.

Способ поясняется следующими примерами

Пример 1.

Модификация сенсора. В качестве модификатора пьезосенсора применяли тритон Х-100, предварительно растворенный в ацетоне.

На оба электрода (диаметр 5 мм, площадь 0,28 см2) пьезосенсора (срез AT, плотность кварца 2600 кг/м3) с собственной частотой 8 МГц наносили микрошприцем тритон Х-100, растворенный в ацетоне в количестве 8 мкг (концентрация 1 мг/см3). Затем помещали в сушильный шкаф при 60С (испарение растворителя).

Ход определения. Пьезосенсор помещали в ячейку детектирования, куда подавали воздух (расход 50 см3/мин) в течение 2 мин, затем прокачивали микрокомпрессором при том же расходе анализируемую пробу, содержащую о- и м-нитротолуолы. Содержание о- и м-нитротолуолов прямо пропорционально разности частот колебаний пьезосенсора в воздухе и в анализируемой пробе.

Способ неосуществим, так как фиксируемый сигнал (F, Гц) нестабилен. Результаты приведены в таблице 1.

Пример 2. Модификацию сенсора проводили аналогично примеру 1, но масса активного сорбента (тритон Х-100, растворенный в ацетоне) 10 мкг, расход газа-носителя и анализируемой газовой пробы 25 см3/мин. Анализировали, как описано в примере 1. Способ осуществим. Продолжительность анализа 5-8 мин. Результаты приведены в таблице 1.

Пример 3. Модификацию сенсора проводили аналогично примеру 1, но масса активного сорбента (тритон Х-100, растворенный в ацетоне) 12 мкг, расход газа-носителя и анализируемой газовой пробы 50 см3/мин. Анализировали, как описано в примере 1. Способ осуществим. Продолжительность анализа 5-8 мин. Результаты приведены в таблице 1.

Пример 4. Модификацию сенсора проводили аналогично примеру 1, но масса активного сорбента (тритон Х-100, растворенный в ацетоне) 12 мкг, расход газа-носителя и анализируемой газовой пробы 75 см3/мин. Анализировали, как описано в примере 1. Способ осуществим. Продолжительность анализа 5-8 мин. Результаты приведены в таблице 1.

Пример 5. Модификацию сенсора проводили аналогично примеру 1, но масса активного сорбента (тритон Х-100, растворенный в ацетоне) 14 мкг, расход газа-носителя и анализируемой газовой пробы 75 см3/мин. Анализировали, как описано в примере 1. Способ неосуществим, так как разрушается поверхность пленки сорбента. Результаты приведены в таблице 1.

Пример 6. Модификацию сенсора проводили аналогично примеру 1, но масса активного сорбента (тритон Х-100, растворенный в ацетоне) 16 мкг, расход газа-носителя и анализируемой пробы 50 см3/мин. Анализировали, как описано в примере 1. Способ неосуществим. Результаты приведены в таблице 1.

Пример 7. Модификацию сенсора проводили аналогично примеру 1, но масса активного сорбента (тритон Х-100, растворенный в ацетоне) 16 мкг, расход газа-носителя и анализируемой пробы 25 см3/мин. Анализировали, как описано в примере 1. Способ неосуществим, так как фиксируемый сигнал (F, Гц) нестабилен. Результаты приведены в таблице 1.

В табл. 2 приведена сравнительная характеристика прототипа и предлагаемого способа по различным параметрам.

Из примеров 1-7 и таблиц 1 и 2 следует, что положительный эффект по предлагаемому способу достигается при массе сорбента (тритон Х-100) 10-12 мкг (концентрация раствора ТХ-100 в ацетоне 1 мг/см3), расходе газа-носителя и анализируемой пробы воздуха 45-55 см3/мин. Эти условия позволяют определять о- и м-нитротолуолы в воздухе. При уменьшении массы сорбента (пример 1), расхода газа-носителя и анализируемой газовой пробы (пример 2) снижается чувствительность модифицированного пьезосенсора по отношению к о- и м-нитротолуолам. Увеличение массы сорбента (тритон Х-100, растворенный в ацетоне) (пример 7), расхода газа-носителя и анализируемой пробы (пример 5) приводит к разрушению поверхности пленки сорбента и нестабильности сигнала.

Положительный эффект по предлагаемому способу достигается за счет того, что применяемый активный сорбент (тритон Х-100, растворенный в ацетоне) позволяет обнаруживать микроколичества о- и м-нитротолуолов в анализируемой пробе (табл. 1), использование в качестве растворителя тритона Х-100 ацетона позволяет получать воспроизводимые сигналы. Выбор оптимальной массы сорбента (10-14 мкг) и расхода воздуха способствует увеличению чувствительности модифицированного пьезосенсора. Снижение температуры анализа со 164 до 20-25С позволяет проводить экспрессное определение о- и м-нитротолуолов в местах их локальных выбросов.

По сравнению с прототипом предлагаемое техническое решение имеет следующие преимущества:

- существенно упрощается аппаратурное оформление анализа;

- продолжительность анализа снижается с 10 мин до 5-8 мин;

- сокращается количество используемых в анализе реагентов;

- снижается температура определения с 210 до 20-25С.

Формула изобретения

Способ определения о- и м-нитротолуолов в воздухе, включающий подготовку пробы, модификацию пьезосенсора активным сорбентом, пропускание через ячейку детектирования пробы и газа-носителя, регистрацию сигнала пьезосенсора, отличающийся тем, что в качестве активного сорбента применяют тритон Х-100 с массой 10-12 мкг, в качестве газа-носителя используют воздух, который пропускают через ячейку детектирования перед пропусканием через нее пробы, а расход и время пропускания в обоих случаях составляют соответственно 45-55 см3/мин и 2-3 мин.



 

Похожие патенты:

Изобретение относится к аналитической химии органических соединений (разделение и анализ) и может быть использовано при анализе воздуха рабочей зоны мебельных фабрик, предприятий фармацевтической и лакокрасочных промышленностей

Изобретение относится к области фармацевтической и аналитической химии и может быть использовано для определения папаверина, димедрола и других алкалоидов в лекарственных формах

Изобретение относится к аналитической химии органических соединений и может быть применено для детектирования нитрометана в воздухе рабочей зоны предприятий фармацевтической и парфюмерной промышленности

Изобретение относится к методам аналитического определения щелочей, щелочных солей и других веществ, имеющих щелочную реакцию и реагирующих с кислотами, а именно к методу тирования, используемого как в учебном процессе, так и на производстве

Изобретение относится к аналитической химии, а именно к составам водочувствительных паст, и может быть использовано для определения границы раздела между нефтепродуктами или маслами и водой в резервуарах, цистернах, танкерах, отстойных очистительных сооружениях заводов и фабрик, где необходимо регулярно контролировать уровень нефтепродуктов, масел и воды

Изобретение относится к области определения остаточного содержания дезинфицирующего средства в воде, в частности к водному раствору азокрасителя для указанной цели
Изобретение относится к области аналитической химии элементов, а именно к методам выделения и определения осмия, и может быть использовано при выделении и определении осмия в объектах различного вещественного состава

Изобретение относится к аналитической химии органических соединений и может быть использовано для контроля качества технологических и очищенных сточных вод предприятий по производству синтетических красителей, полимерных материалов и пестицидов

Изобретение относится к аналитической химии (индикаторным составам) и может быть использовано для определения никеля (II) в водных растворах, в частности в сточных водах и производственных растворах

Изобретение относится к аналитической химии органических соединений (разделение и анализ) и может быть использовано при анализе воздуха рабочей зоны мебельных фабрик, предприятий фармацевтической и лакокрасочных промышленностей

Изобретение относится к аналитической химии органических соединений и может быть применено для детектирования нитрометана в воздухе рабочей зоны предприятий фармацевтической и парфюмерной промышленности

Изобретение относится к методам анализа токсичных соединений и может быть использовано при экологическом мониторинге

Изобретение относится к методам анализа токсичных соединений и может быть использовано при экологическом мониторинге

Изобретение относится к области аналитической химии органических соединений, а именно, области определения органических соединений при их совместном присутствии методом газожидкостной колоночной хроматографии, и может быть использовано для раздельного определения фенолов в жидких средах, преимущественно в промышленных стоках, а также при анализе природных вод

Изобретение относится к области аналитической химии органических соединений, а именно, области определения органических соединений при их совместном присутствии методом газожидкостной колоночной хроматографии, и может быть использовано для раздельного определения фенолов в жидких средах, преимущественно в промышленных стоках, а также при анализе природных вод
Изобретение относится к усовершенствованному способу каталитического жидкофазного нитрования ароматических соединений, которые могут использоваться в качестве промежуточных продуктов в производстве полиуретанов и других полимерных материалов, красителей, лекарственных соединений и взрывчатых веществ
Наверх