Способ вольтамперометрического измерения концентрации йода

 

Использование: изобретение относится к области аналитической электрохимии и может быть использовано для определения микроконцентраций йода в различных объектах: вода питьевая и природная, пищевые продукты и др. Сущность изобретения: вольтамперометрический способ определений йода основан на предварительном нанесении металлической ртути на поверхность твердого электрода в виде тонкой пленки и последующем использовании этого электрода для электрохимического определения йода. Определение йода состоит в электрохимическом осаждении на пленке ртути йодсодержащих продуктов из анализируемого раствора, который представляет собой анализируемое вещество, растворенное в фоновом электролите, и электрохимическом растворении ранее осажденных йодсодержащих продуктов. Концентрация йода определяется по величине катодного тока электрохимического растворения йодсодержащих продуктов. Нанесение металлической ртути на поверхность твердого электрода осуществляют электрохимическим осаждением ртути из рабочего раствора, содержащего соль ртути в присутствии ионов йода. Сформированная таким образом пленка ртути является тонкой, что позволяет на стадии электрохимического растворения осажденных йодсодержащих продуктов использовать высокие скорости развертки потенциала (более 0,1 В/с) для увеличения чувствительности измерений и сокращения времени анализа. Техническим результатом изобретения является: возможность измерять концентрацию йода в различных объектах с высокой точностью, без необходимости работы с высокотоксичной металлической ртутью на стадии предварительного нанесения пленки ртути на твердый электрод. Кроме того, существенно (в 5-7 раз) сокращается время анализа пробы, что увеличивает экспрессность измерений и делает работу пользователей более производительной. 1 н. и 2 з. п. ф-лы.

Настоящее изобретение относится к области аналитической электрохимии, в частности к методам измерения концентрации йода в различных растворах, и может быть использовано для определения микроконцентраций йода в питьевой и природной воде, пищевых продуктах и пр.

В настоящее время известны методы измерения концентрации йода на ртутной капле (полярография) или ртутно-пленочном индикаторном электроде, сформированном на металлической подложке. Формирование ртутно-пленочного электрода на металлической подложке проводится, как правило, опусканием рабочей части электрода (подложки) в металлическую ртуть с последующим растиранием ртути фильтровальной бумагой для равномерного распределения ее по поверхности подложки.

Известный метод измерения концентрации йода с использованием ртутно-пленочного электрода [1] реализован на трехэлектродной электрохимической ячейке, включающей рабочий ртутно-пленочный электрод на металлической подложке, вспомогательный электрод и электрод сравнения (например, хлорсеребряный).

Ртутно-пленочный электрод предварительно формируют путем опускания рабочей части металлического электрода в металлическую ртуть на 2-3 с, последующего растирания ртути на металлической подложке фильтровальной бумагой и электрохимической очистки подготовленного ртутно-пленочного электрода путем его выдерживания в потенциостатическом режиме при пропускании газа (например, азота).

После формирования ртутно-пленочного электрода и установки электрических параметров измерения электроды опускают в фоновый электролит (например, калий азотно-кислый), содержащий анализируемое вещество (диссоциирующее на ионы йода), и проводят электрохимическое осаждение на ртутно-пленочном электроде ионов йода в виде малорастворимых соединений с ртутью (например,Hg2J2).

Осажденный продукт электрохимически растворяют при определенной скорости изменения потенциала (например, 0,02 В/с) и одновременно регистрируют вольтамперную кривую. Аналитическим сигналом при этом является пик иодид-ионов на вольтамперной кривой в диапазоне потенциалов от - 0,30 до - 0,35 В. При измерении концентрации йода описанным методом чувствительность определения составляет единицы мкг/дм3.

Недостатком описанного способа измерения концентрации йода с использованием ртутно-пленочного электрода [1] является значительное время измерений, не позволяющее эффективно решать многие аналитические задачи. Вольтамперометрическое измерение концентрации йода описанным методом в одной пробе занимает 15-20 мин, что делает работу пользователей малопроизводительной, т.к. при такой продолжительности измерений можно анализировать не более 10 проб в день.

Получаемый известными способами рабочий ртутно-пленочный электрод является толстопленочным (толщина пленки ртути составляет более 25 мкм) и поэтому может работать в диапазоне весьма ограниченных скоростей изменения потенциала (до 0,1 В/с), что не позволяет повысить скорость развертки потенциала (по крайней мере, до десятков В/с) для увеличения чувствительности и сокращения времени измерений.

Не менее существенным недостатком описанного известного способа измерения концентрации йода с использованием ртутного толстопленочного электрода является также необходимость практически ручной работы с металлической ртутью при предварительном формировании указанного электрода, что предъявляет дополнительные требования к помещению, в котором проводят вольтамперометрические измерения (наличие вытяжки, емкости для хранения ртути и пр.). Кроме того, нанесение пленки ртути на металлическую подложку и необходимость повторения операции нанесения пленки (в случае появления незаамальгамированных участков или образования серого налета на поверхности электрода) требует наличия определенных навыков у исполнителя.

Предлагаемый способ вольтамперометрического измерения концентрации йода с использованием ртутно-пленочного электрода свободен от указанных выше недостатков и позволяет при сравнительно небольшом времени анализа одной пробы (2-3 мин) с более высокой точностью измерять концентрации йода на уровне единиц мкг/дм3.

Эти достоинства предлагаемого способа вольтамперометрического измерения концентрации йода достигаются за счет того, что накопление и растворение малорастворимых соединений йода с ртутью осуществляют с использованием ртутного тонкопленочного рабочего электрода на графитовой подложке. Предварительное формирование указанного ртутно-пленочного рабочего электрода осуществляют электрохимическим осаждением ртути на графитовой подложке из раствора, содержащего соль ртути, в присутствии ионов йода.

Сформированный посредством электрохимического осаждения рабочий ртутно-пленочный электрод является тонкопленочным, что дает возможность использования высоких скоростей развертки потенциала (более 0,1 В/с) и как следствие этого позволяет значительно увеличить чувствительность и резко сократить время измерений.

Кроме того, при формировании электрода нет необходимости работать с металлической ртутью. При этом расход соли ртути, используемой для формирования ртутно-пленочного электрода, незначителен.

Сформированный таким образом рабочий ртутно-пленочный электрод может быть использован для измерения концентрации йода многократно (до 50 измерений).

Предлагаемый способ вольтамперометрического измерения концентрации йода состоит в следующем. Устанавливают трехэлектродную электрохимическую ячейку, включающую рабочий электрод, вспомогательный электрод и электрод сравнения. Рабочий ртутно-пленочный электрод предварительно формируют на графитовой подложке путем электрохимического осаждения пленки ртути при отрицательном потенциале из раствора, содержащего соль ртути, в присутствии ионов йода. После установки электрических параметров измерений электроды погружают в фоновый раствор, содержащий анализируемое вещество, и проводят электрохимическое осаждение ионов йода (в виде малорастворимых соединений с ртутью) при определенном потенциале на ртутно-пленочном электроде. Электрохимически растворяют накопленный продукт (указанные малорастворимые соединения с ртутью) при определенной скорости изменения потенциала на рабочем электроде (более 0,1 В/с) и регистрируют вольтамперную кривую. Аналитическим сигналом при этом является высота катодного пика иодид-ионов на вольтамперной кривой в области потенциалов от - 250 до - 350 В.

Для определения концентрации иодид-ионов в анализируемом веществе используют метод стандартной добавки градуировочного раствора (например, раствора иодида калия) в фоновый раствор, содержащий анализируемое вещество. После регистрации вольтамперной кривой фонового раствора, содержащего анализируемое вещество и градуировочный раствор, определяют массовую концентрацию йода в анализируемом веществе по величине катодного пика иодид-ионов.

Основные преимущества предлагаемого способа вольтамперометрического определения йода с использованием рабочего ртутного тонкопленочного электрода на графитовой подложке состоят в высокой чувствительности и точности измерения концентрации йода за счет использования высокоскоростного режима съемки вольтамперных кривых, в отсутствии необходимости работы с металлической ртутью, низком расходе соли ртути для формирования ртутно-пленочного электрода, в использовании одного и того же рабочего электрода как для определения йода, так и для определения остальных токсичных элементов, в отсутствии необходимости использования газа для электрохимической очистки рабочего электрода.

Предлагаемый способ вольтамперометрического измерения концентрации йода был реализован на практике с использованием анализатора вольтамперометрического АВА-2 по ТУ 4215-016-00227703-98 (производства НПП "Буревестник"). В работе использовалась трехэлектродная электрохимическая ячейка, включающая рабочий ртутно-пленочный электрод на углеситалловой подложке, вспомогательный платиновый электрод и хлорсеребряный электрод сравнения. Ртутно-пленочный электрод предварительно формировали путем электрохимического осаждения пленки ртути на углеситалловой подложке из рабочего раствора (калий азотно-кислый, содержащий соль ртути, в присутствии ионов йода) при отрицательном потенциале. Для определения йода электрохимическое накопление малорастворимых соединений йода с ртутью проводили из фонового раствора (соль тетраоксалата), в котором было растворено анализируемое вещество, при потенциале 0 В на ртутно-пленочном электроде. Электрохимическое растворение малорастворимых соединений йода с ртутью и регистрацию аналитического сигнала проводили при развертке потенциала на рабочем электроде от 0 до - 600 В со скоростью более 0,1 В/с.

Предлагаемый способ вольтамперометрического измерения концентрации йода найдет широкое применение в аналитической электрохимии, так как позволяет решить серьезные существующие проблемы. Реализация предлагаемого способа исключает необходимость работы с высокотоксичной металлической ртутью при формировании и подготовке рабочего электрода к работе. Для измерения концентрации йода не требуется высокой квалификации и наличия весьма специфических навыков у исполнителя, которому достаточно владеть стандартными приемами подготовки электродов и прибора к работе. По сравнению с известными методами существенно (в 5-7 раз) повышается экспрессность анализа (за счет повышения чувствительности и сокращения времени измерений), что делает работу пользователей более производительной.

Предлагаемый способ определения йода был использован для определения массовой концентрации йода в питьевой воде, пищевой соли, хлебобулочных изделиях, молочных продуктах. Чувствительность определения йода в указанных объектах составляет менее 1 мкг/дм3, общее время анализа одной пробы составляет от 1 до 5 мин (в зависимости от измеряемой концентрации).

ИСТОЧНИКИ ИНФОРМАЦИИ

1. Метод измерения массовой концентрации иодид-ионов в иодированных продуктах (молоко и кисломолочные продукты). МУ 08-47/121 (разработан в Томском политехническом университете и ООО ВНП Ф “ЮМХ”) Томск, 2002 г.

Формула изобретения

1. Способ вольтамперометрического измерения концентрации йода в анализируемом растворе, заключающийся в том, что на поверхность твердого электрода предварительно наносят металлическую ртуть в виде пленки, электрохимически осаждают на этой пленке йодсодержащие продукты из анализируемого раствора, представляющего собой анализируемое вещество, растворенное в фоновом электролите, изменением потенциала рабочего электрода электрохимически растворяют указанные осажденные йодсодержащие продукты, измеряют величину катодного тока растворения указанных йодсодержащих продуктов, идентифицируют пик йода на вольтамперной кривой и по величине пика йода определяют концентрацию йода в анализируемом растворе, отличающийся тем, что предварительное нанесение металлической ртути на поверхность твердого электрода осуществляют электрохимическим формированием ртутной пленки из рабочего раствора, содержащего ионы ртути в присутствии ионов йода.

2. Способ по п.1, отличающийся тем, что скорость изменения потенциала рабочего электрода при электрохимическом растворении ранее осажденных йодосодержащих продуктов задают более 0,1 В/с.

3. Способ по пп.1 и 2, отличающийся тем, что в качестве фонового электролита для растворения анализируемого вещества используют раствор соли тетраоксалата.



 

Похожие патенты:

Изобретение относится к области аналитической химии и может быть использовано для анализа органических веществ и фармацевтических препаратов

Изобретение относится к аналитической химии, а именно к способу потенциометрического определения концентрации веществ в растворах экстракционных систем путем измерения ЭДС электродной пары, состоящей из мембранного электрода и стандартного хлорсеребряного электрода, и определения концентрации веществ по градуировочному графику, выражающему прямолинейную зависимость "ЭДС электродной пары - концентрация испытуемого раствора"

Изобретение относится к области аналитической химии и может быть использовано для раздельного определения катионных (КПАВ), неионогенных (НПАВ) и анионных (АПАВ) поверхностно-активных веществ (ПАВ) в различных объектах, например шампунях, моющих средствах, сточных водах и др

Изобретение относится к аналитическому приборостроению, в частности к электрохимическим приборам, и может использоваться в промышленности и научных исследованиях для точного определения основного вещества методом кулонометрии при контролируемом потенциале

Изобретение относится к способу кулонометрического определения технеция и может быть использовано для контроля за содержанием технеция в технологических растворах радиохимического производства, а также в других областях, где используются соединения технеция

Изобретение относится к электрохимии и может быть использовано в машиностроении для управления процессом нанесения гальванических покрытий при электролизе, а также при работах, связанных с зарядкой и тренировкой аккумуляторных батарей и в других электротехнологиях

Изобретение относится к физико-химическим методам исследования окружающей среды, а именно к способу определения концентрации ионов в жидкостях, включающему разделение пробы анализируемого и стандартного веществ ионоселективной мембраной, воздействие на анализируемое и стандартное вещества электрическим полем и определение концентрации детектируемых ионов по их количеству в пробе, при этом из стандартного вещества предварительно удаляют свободные ионы, а количество детектируемых ионов в пробе определяют методом микроскопии поверхностных электромагнитных волн по толщине слоя, полученного из ионов путем их осаждения на электрод, размещенный в стандартном веществе, после прекращения протекания электрического тока через стандартное вещество

Изобретение относится к аналитической химии органических соединений, а именно к способу определения гидрохинона и гваякола или пирокатехина и гваякола в водных растворах вольтамперометрическим методом, при этом пробу предварительно обрабатывают диоксаном в присутствии сульфата аммония и определение проводят в выделившейся органической фазе на стеклоуглеродном электроде при pH 2-3

Изобретение относится к области аналитической химии, а именно к способу потенциометрического определения концентрации веществ в растворах экстракционных систем путем измерения скачка потенциала в органической фазе, осуществляя токоотвод через контактирующие с ней водные фазы, одна из которых является стандартным, а другая - испытуемым растворами, и определения концентрации по градуировочному графику в координатах скачок потенциала - концентрация испытуемого раствора

Изобретение относится к области мембранных технологий разделения и очистки веществ и может быть использовано для определения свойств селективной проницаемости ионообменных мембран

Изобретение относится к измерительной технике

Изобретение относится к области физики статического электричества и может быть использовано в газовой, нефтеперерабатывающей и химической промышленности, а именно для определения концентрации ионов в объеме нефтепродуктов

Изобретение относится к способу и устройству для измерения способности к образованию осадка у текучих сред и эффективности ингибиторов осаждения

Изобретение относится к аналитической химии и может быть использовано для определения массового содержания остаточных количеств полиоксиэтилированных неионогенных ПАВ в их сульфатированных производных

Изобретение относится к потенциометрическим методам определения концентрации фторид-ионов в водной среде

Изобретение относится к области аналитической химии и мембранных технологий и может быть использовано для потенциометрического определения ионного состава электромембранных систем

Изобретение относится к области аналитической химии и может найти применение при проведении анализов растворов на количественное определение органических веществ, в частности при определении фенолов в водных растворах, например воды, взятой из водоемов

Изобретение относится к аналитической химии, а именно к способам потенциометрического определения веществ с использованием двух стандартных добавок определяемого вещества к анализируемому раствору этого вещества, и может быть использовано при анализе объектов со сложной матрицей, а также при наличии в пробе примесей неконтролируемого (переменного) содержания
Наверх