Способ получения селективного по ионам натрия и кальция сорбента

 

Изобретение относится к способу получения сорбентов и может найти использование в химической, металлургической и других отраслях промышленности для глубокой очистки технологических растворов хлорида лития и хлоридных литийсодержащих природных рассолов, содержащих примеси натрия и кальция. Получен модифицированный углеродсодержащий сорбент, состоящий из пористого композиционного углерод-углеродного материала, с удельной поверхностью по адсорбции аргона 300-600 м2/г, предпочтительнее 440-600 м2/г, суммарным объемом пор по воде 0,6-1,0 см3/г и размером частиц 0,5-1,6 мм, предпочтительнее 1,0-1,2 мм, предварительно прогретый при температуре 80С, обработанный гидролизованными соединениями сурьмы (V) и высушенный. Получен сорбент с высокой емкостью и селективностью. 8 з.п. ф-лы, 3 табл.

Изобретение относится к способу получения сорбентов и может найти использование при очистке промышленных технологических растворов, природных хлоридных литийсодержащих рассолов от примеси натрия и кальция в химической, металлургической и других отраслях промышленности.

Известен способ по патенту США №4859343, кл. С 02 F 001/42, 1989 г. получения сорбента с использованием кристаллической или поликристаллической сурьмяной кислоты, нанесенной на окись алюминия, кремнезема, смолу анионного типа и очистки на нем растворов хлорида лития от примеси натрия при рН 11-12 в интервале температур от 20 до 80°С.

Недостатком вышеизложенного изобретения является его трудоемкость, невысокая полная обменная емкость и сложность регенерации.

Наиболее близким по способу - прототип - получения модифицированных сурьмой сорбентов, селективного по ионам натрия является патент Литиевой Корпорации Америки №4929588, кл. В 01 J 020/06; B 01 J 020/08; B 01 J 020/16 1990 г., где в качестве основы используют следующие материалы: цеолит, окись алюминия, окись алюминия с кремнеземом и смолы анионного типа Dowex. ТМ. MSA-1, Dowex. TM.MWA-1, Amberlite.TM.IRA-900 и т.п. в хлор- или гидроксилформе. Материал-основу пропитывают пентахлоридом сурьмы, высушивают при комнатной температуре, к смеси добавляют гидроксид аммония и воду для осаждения сурьмяной кислоты на поверхности основы. Смесь оставляется на от 24 часов до 10 дней, предпочтительно на 3 дня. После чего модифицированный сурьмяной кислотой сорбент отделяют от раствора, промывают и высушивают на воздухе несколько дней или в сушильном шкафу при температуре 80 С и выше. Полученный сорбент загружают в колонку и пропускают хлоридный раствор лития, содержащий примеси натрия при рН 11-12 и температуре 20-80 С. Удаление примеси натрия осуществляется на 99% и более.

Недостатком вышеизложенного изобретения является использование дорогостоящих дополнительных компонентов, сложность и трудоемкость синтеза, невысокая полная обменная емкость по натрию ПОЕ=0,0064 мг/г.

Задачей изобретения является разработка более дешевого способа получения сорбента с селективными свойствами по натрию и кальцию и более высокой обменной емкостью относительно аналогов.

Поставленная задача решается благодаря тому, что в способе получения ионселективного по ионам натрия и кальция сорбента, включающем пропитку материала-основы гидролизованными соединениями сурьмы, сушку, согласно формуле изобретения в качестве материала-основы используют пористый материал, предварительно высушенный и окисленный, пропитку проводят при охлаждении, после сушки проводят отмывку хлор-иона и последующую сушку. Задача также решается благодаря тому, что используют композиционный пористый углерод-углеродный материал с удельной поверхностью по ВЭТ 440-600 м2/г, насыпной плотностью 0,45-0,65 см2/г, суммарным объемом пор по воде 0,6-1,0 см2/г, размером частиц 0,5-1,6 мм, предпочтительнее 1,0-1,2 мм. Задача также решается благодаря тому, что используют композиционный пористый углерод-углеродный материал, предварительно высушенный при температуре 80-100 С в течение 1-7 дней и окисленный кислородом воздуха при температуре 200-500 С в течение часа.

Задача также решается благодаря тому, что окисление пористого композиционного углерод-углеродного материала проводят азотной кислотой или пероксидом водорода.

Задача также решается благодаря тому, что пропитку гидролизлванными соединениями сурьмы проводят при охлаждении 0-10 С, а последующую сушку проводят при температуре 80-270 С в течение 1-14 дней.

Задача также решается благодаря тому, что после отмывки от хлор-иона проводят сушку при температуре 80-110 С в течение 1-7 дней.

Указанная совокупность признаков является новой и обладает изобретательским уровнем, так как использование пористого углерод-углеродного материала, образованного нанесением графитоподобного углерода на пористую матрицу из углерода, сажи, имеющего турбостратную структуру (Гаврилов В.Ю., Фенелонов В.Б., Чувилин А.Л., ХТТ -1990 - №2 - с.125-129), и характеризующегося тем, что он состоит из частиц 0,5-1,6 мм, с удельной поверхностью по ВЭТ 440-600 м2/г, насыпной плотностью 0,45-0,65 см/г, суммарным объемом пор по воде 0,6-1,0 см2/г, имеющего характерное распределение пор с максимумом, приходящимся на поры с размером 40-200 ангстрем, позволяет использовать данный материал в качестве основы для получения сорбента. Развитая поверхность углеродного материала, преобладание мезопор, обеспечивает после обработки гидрализованными соединениями сурьмы получение сорбента с высокой селективной иобменной емкостью по натрию и кальцию. Термообработка углерод-углеродного материала при температуре 80°С в течение 1 -7 дней удаляет влагу и образует поверхностные кислородсодержащие радикалы, которые способствуют образованию прочной химической связи угсвязи углеродной поверхности с кристаллической или поликристаллической сурьмяной кислотой.

Получение ионселективного по натрию и кальцию сорбента на основе пористого композиционного углерод-углеродного материала состоит в следующем. Основу - пористый композиционный углерод-углеродный материал с удельной поверхностью по ВЭТ 440-600 м2/г, насыпной плотностью 0,45-0,65 см2/г, суммарным объемом пор по воде 0,6-1,0 см2/г, размером частиц 0,5-1,6 мм, предпочтительнее 1,0-1,2 мм, предварительно высушенный при температуре 80-100 С в течение 1-7 дней, окисляют (азотной кислотой, пероксидом водорода или в токе воздуха при температуре от 200-500 С в течение часа), обрабатывают гидрализованными соединениями сурьмы (V) при охлаждении, выдерживают в течение 7-14 дней при нагревании, после чего отмывают излишки хлор-ионов дистиллированной водой. Полученный влажный сорбент выдерживают при температуре 80-110 С в течение 7 дней. Высушенный сорбент загружают в ионообменную колонку и используют для очистки от натрия и кальция литийсодержащих растворов.

Применение сорбента позволяет получить технические преимущества: концентрацию натрия и кальция в растворе можно снизить до уровня: натрия - 0,00025 г/л и кальция - 0,002 г/л при пропускании 740 мл раствора хлорида лития с исходным содержанием натрия - 0,05 г/л и кальция - 0,1 г/л через сорбент массой 28 г.

Разработанный способ получения углеродного сорбента селективного по натрию и кальцию позволяет при относительной простоте синтеза и использовании дешевого углеродного носителя получать высокочистый хлорид лития, что, в свою очередь, позволяет получить из него металлический литий с содержанием ОВ 99,9%.

Пример 1

Навеска 22 г углерод-углеродного пористого композиционного материала, имеющего удельную поверхность по адсорбции аргона 446 м2/г, суммарный объем пор по воде 1,1 см3/г, размер частиц 0,5-0,7 мм, была предварительно высушена при температуре 80 С в течение 24 часов, окислена кислородом воздуха при 450 С в течение 1 часа и при охлаждении обработана 30 г пентахлорида сурьмы, гидролизована дистиллированной водой и высушена при температуре 80 С в течение 7 дней. После чего излишки хлора отмыты дистиллированной водой и образец высушен при температуре 80 С в течение 7 дней. После сушки полученный сорбент весом 28 г, содержащий 12% гидролизованных соединений сурьмы (V) загружен в стеклянную колонку диаметром 0,9 см и высотой слоя 40 см. Линейная скорость подачи раствора хлорида лития через колонку с сорбентом была постоянной и равной 0,78 см3/см2 мин. Объемная скорость составила 30 мл/час. На выходе из сорбционной колонки каждые 30 мл раствора анализировались на содержание натрия и кальция методом ААС. Химический состав очищенного раствора приведен в табл. 1.

Через колонку было пропущено 1240 мл раствора хлорида лития. Концентрация натрия в исходном растворе 0,05 г/л и кальция 0,1 г/л. По этим данным (табл. 1) было рассчитано общее содержание натрия и кальция (мг) на сорбенте (по разнице между содержанием натрия и кальция в объеме исходного и пропущенного растворов), и отнесение этой величины к весу сорбента позволило оценить динамическую обменную емкость до проскока и полную динамическую емкость сорбента. Динамическая емкость до проскока по натрию (за проскок принимается величина 0,005 г/л) сорбента=1,8 мг/г.

Полная динамическая обменная емкость по натрию=2,2 мг/г.

Динамическая обменная емкость до проскока по кальцию (за проскок принимается величина 0,01 г/л) сорбента=2,6 мг/г.

Полная динамическая обменная емкость по кальцию сорбента=4 мг/г.

Пример 2

Навеска углерод-углеродного материала, с удельной поверхностью по адсорбции аргона 446 м2/г, суммарным объемом пор по воде 0,73 см2/г, насыпной плотностью 0,47 см2/г, размер частиц 1,0-1,2 мм была предварительно высушена при температуре 80 С в течение 24 часов, обработана пероксидом водорода и смесью диоксида сурьмы (Ш) с гидроксидом калия, гидролизована водой и высушена при температуре 80 С в течение 7 дней. После сушки полученный сорбент 28 г, содержащий 20% гидролизованных соединений сурьмы (V), загружен в стекляную колонку диаметром 0,9 см и высотой слоя 50 см. Объемная скорость подачи раствора хлорида лития через колонку с сорбентом была постоянной и составляла 30 мл/час. На выходе из сорбционной колонки каждые 30 мл раствора анализировались на содержание натрия и кальция методом ААС. Исходный раствор хлорида лития содержал натрия - 0,005 г/л и кальция 0,019 г/л. Химический состав очищенного раствора приведен в табл. 2.

Значение полной динамической обменной емкости сорбента при данных концентрационных условиях по натрию равно 0,09 мг/г, по кальцию - 0,47 мг/г.

Пример 3

Навеска углерод-углеродного материала с удельной поверхностью по адсорбции аргона 446 м2/г, суммарным объемом пор по воде 0,73 см2/г, насыпной плотностью 0,47 см2/г, размер частиц 1,0-1,2 мм была предварительно высушена при температуре 80°С в течение 24 часов, окислен пероксидом водорода и модифицирован смесью диоксида сурьмы (Ш) с гидроксидом калия, гидролизована водой. После сушки обработан азотной кислотой для получения на поверхности материала гидролизованных соединений сурьмы (V) и удаления ионов калия и высушена при температуре 80 С в течение 7 дней. Полученный сорбент 36 г, содержащий 12% гидролизованных соединений сурьмы (V), загружен в стекляную колонку диаметром 11 мм и высотой слоя 76 см. Объемная скорость подачи раствора хлорида лития через колонку с сорбентом была постоянной и составляла 100 мл/час. На выходе из сорбционной колонки каждые 60 мл раствора анализировались на содержание натрия и кальция методом ААС. Исходный раствор хлорида лития содержал натрия 0,05 г/л и кальция 0,075 г/л. Химический состав очищенного раствора приведен в табл. 3.

Динамическая обменная емкость до проскока (проскок определяется требованиями к чистоте готовой продукции - литий металлический) по натрию - 1,97 мг/г. Динамическая обменная емкость до проскока по кальцию 2,85 мг/г.

Таким образом, полученные сорбенты имеют более высокую полную обменную емкость по натрию и кальцию, а использование углерод-углеродного материала позволяет упростить и удешевить процесс получения ионселективного сорбента.

Формула изобретения

1. Способ получения селективного по ионам натрия и кальция сорбента, включающий пропитку материала-основы гидролизованными соединениями сурьмы, сушку, отличающийся тем, что в качестве материала-основы используют пористый композиционный углерод-углеродный материал, предварительно высушенный и окисленный, пропитку проводят при охлаждении, после сушки проводят отмывку хлор-иона и последующую сушку.

2. Способ по п.1, отличающийся тем, что используют композиционный пористый углерод-углеродный материал с удельной поверхностью по ВЭТ 440-600 м2/г, насыпной плотностью 0,45-0,65 см2/г, суммарным объемом пор по воде 0,6-1,0 см3/г, размером частиц 0,5-1,6 мм, предпочтительнее 1,0-1,2 мм.

3. Способ по п.1, отличающийся тем, что композиционный пористый углерод-углеродный материал предварительно сушат при температуре 80-100С в течение 1-7 дней.

4. Способ по п.1, отличающийся тем, что композиционный пористый углерод-углеродный материал окисляют кислородом воздуха при температуре 200-500С в течение часа.

5. Способ по п.1, отличающийся тем, что окисление пористого композиционного углерод-углеродного материала проводят азотной кислотой.

6. Способ по п.1, отличающийся тем, что окисление пористого композиционного углерод-углеродного материала проводят пероксидом водорода.

7. Способ по п.1, отличающийся тем, что пропитку материала-основы гидролизованными соединениями сурьмы проводят при охлаждении 0-10С.

8. Способ по п.1, отличающийся тем, что сушку пропитанного материала-основы гидролизованными соединениями сурьмы проводят при температуре 80-270С в течение 1-14 дней.

9. Способ по п.1, отличающийся тем, что после отмывки сорбента от хлор-иона проводят сушку при температуре 80-110С в течение 1-7 дней.



 

Похожие патенты:
Изобретение относится к области сорбционной техники и может быть использовано в процессах очистки отходящих промышленных газов или в средствах индивидуальной защиты органов дыхания
Изобретение относится к области сорбционной техники и может быть использовано в процессах очистки промышленных газов или в средствах индивидуальной защиты органов дыхания

Изобретение относится к производству адсорбентов на угольной основе, в частности к производству адсорбента для поглощения аварийно химически опасных веществ ингаляционного действия органического кислого и нейтрального характеров, отравляющих веществ в средствах защиты

Изобретение относится к производству поглотителей на основе активированных углеродных тканей для поглощения аварийно химически опасных веществ ингаляционного действия кислого, нейтрального и органического характеров, радиоактивных газов и паров

Изобретение относится к производству адсорбентов на угольной основе, в частности к производству адсорбента для поглощения органических паров (бензол, толуол, циклогексан и т.п.), неорганических газов и паров (гидрид серы, циан водорода, хлор и т.п.), кислых газов и паров (диоксид серы, хлористый водород, фтористый водород и т.п.) и аммиака в средствах защиты

Изобретение относится к способу получения адсорбента для поглощения паров воды, аммиака и органических веществ (бензол, толуол, циклогексан и др.) и может быть использовано в средствах защиты органов дыхания, в частности, в качестве одного из компонентов фильтрующе-поглощающей коробки (ФПК) газодымозащитного комплекта (ГДЗК)

Изобретение относится к химической промышленности и утилизации отходов

Изобретение относится к производству адсорбентов на угольной основе, предназначенных для поглощения органических паров (бензол, толуол, циклогексан и т.п.) и кислых газов и паров (диоксид серы, хлористый водород, фтористый водород и т.п.)

Изобретение относится к производству адсорбентов на угольной основе, в частности к производству адсорбента для поглощения органических паров (бензол, толуол, циклогексан и т.п.), неорганических газов и паров (гидрид серы, циан водорода, хлор и т.п.), кислых газов и паров (диоксид серы, хлористый водород, фтористый водород и т.п.) и паров аммиака в средствах защиты

Изобретение относится к производству адсорбентов на угольной основе, в частности к производству адсорбента для средств индивидуальной защиты органов дыхания (СИЗОД), предназначенных для поглощения смеси органических паров (бензол, толуол, циклогексан и т.п.) и неорганических газов и паров (гидрид серы, циан водорода, хлор и т.п.), или смеси неорганических и кислых (диоксид серы, хлористый водород, фтористый водород и т.п.) газов и паров, или смеси органических паров, неорганических и кислых газов и паров

Изобретение относится к получению материалов для водоочистки

Изобретение относится к золь-гель технологии получения сферогранулированных ионообменников и сорбентов на основе гидроксида и оксида циркония, а также катализаторов и порошков для плазменного напыления и получения высокотемпературной керамики на основе диоксида циркония

Изобретение относится к области экологии, в частности к сорбционной очистке водных растворов
Изобретение относится к области неорганических сорбентов, используемых в водоподготовке
Изобретение относится к области обработки природной воды

Изобретение относится к производству сорбентов на основе оксида цинка для очистки газов от сернистых соединений

Изобретение относится к области сорбционной очистки жидкого топлива

Изобретение относится к химической промышленности и утилизации отходов

Изобретение относится к сорбционным материалам и способам их получения для широкого использования этих материалов в медицине, ветеринарии, пищевой промышленности, для очистки воды, растворов
Наверх